A central paradigm of moiré materials relies on the formation of superlattices that yield enlarged effective crystal unit cells. While a critical consequence of this phenomenon is the celebrated flat electronic bands that foster strong interaction effects, the presence of superlattices has further implications. Here we explore the advantages of moiré superlattices in twisted bilayer graphene (TBG) aligned with hexagonal boron nitride (hBN) for passively enhancing optical conductivity in the low-energy regime. To probe the local optical response of TBG/hBN double-moiré lattices, we use infrared (IR) nano-imaging in conjunction with nanocurrent imaging to examine local optical conductivity over a wide range of TBG twist angles. We show that interband transitions associated with the multiple moiré flat and dispersive bands produce tunable transparent IR responses even at finite carrier densities, which is in stark contrast to the previously limited metallic near transparency observed only in undoped pristine graphene.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.nanolett.4c02841DOI Listing

Publication Analysis

Top Keywords

optical conductivity
12
twisted bilayer
8
bilayer graphene
8
local optical
8
nanoscale optical
4
conductivity imaging
4
imaging double-moiré
4
double-moiré twisted
4
graphene central
4
central paradigm
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!