AI Article Synopsis

Article Abstract

This article presents the contribution of multicellular converters in improving of the quality of power produced in photovoltaic chain, with the aim of exploiting the maximum power produced by the photovoltaic generator with low oscillations around of the maximum power point (MPP) at steady state and to reduce switching losses. After modeling the multicellular parallel boost converter, fractional short circuit current (FSCC) MPPT was modified to get an estimated photocurrent as a reference to control the inductance current for good functioning of the converter in pursuit of the maximum power point. To verify the performance of the proposed solution, the system was submitted to irradiance and temperature variations. The simulations carried out in the Matlab/Simulink environment presented satisfactory results of the proposed solution, in comparison with the high-gain quadratic boost converter we have a response time of 0.04 s, power oscillations at maximum point around 0.05 W and efficiency of 99.08%; in comparison with the interleaved high-gain boost converter the results show a response time of 0.1 s for the transferred power, a very low output voltage ripples of 0.001% and 98.37% as efficiency of the chain. The proposed solution can be connected to a grid with a reduction of level of the inverter and active filter.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11371253PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0309460PLOS

Publication Analysis

Top Keywords

maximum power
12
boost converter
12
proposed solution
12
fractional short
8
short circuit
8
circuit current
8
efficiency chain
8
power produced
8
produced photovoltaic
8
oscillations maximum
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!