The temporal distribution of ridership in metro stations from land-use perspective.

PLoS One

School of Civil and Architectural Engineering, Xi'an Jiaotong University City College, Xi'an, Shaanxi Province, China.

Published: September 2024

A reasonable land use development around subway stations can balance the utilization rates of the subway system during peak and off-peak hours, thereby enhancing its service levels and operational efficiency. Analyzing the temporal distribution patterns of passenger flow and their influencing factors is crucial for determining the optimum ratio of each land use type surrounding metro stations. Thus, this paper employs principal component analysis (PCA) at first to investigate the temporal distribution of metro ridership, and identify their main patterns and factor loadings. Then, using geographically weighted regression, the study examines the spatial dependencies between the main component proportions and influencing factors, focusing on Xi'an subway stations. The results indicate that the temporal distribution of passenger flow can be decomposed into three principal components: the first representing commuting characteristics, and the second and third representing regulating functions. The overall distribution is a composite of these components in varying proportions. Residential and educational land uses primarily drive morning and evening peak flows, with residential land use in the city center and peripheral areas having a more pronounced effect compared to transitional areas. Conversely, commercial & office, healthcare, and recreational & park land mitigate peak flows and increase off-peak flows. External hub enhances passenger flow throughout the day, while industrial land use has negligible impact.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11371217PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0308759PLOS

Publication Analysis

Top Keywords

temporal distribution
16
passenger flow
12
metro stations
8
subway stations
8
influencing factors
8
peak flows
8
land
6
temporal
4
distribution ridership
4
ridership metro
4

Similar Publications

Cellular distribution of some intermediate filaments in the rat mammary gland during pregnancy, lactation and involution.

Pol J Vet Sci

December 2024

Department of Histology and Embryology, Faculty of Veterinary Medicine, University of Dicle, 21280 Diyarbakır, Turkey.

Intermediate filaments (IFs) play a major role in determining and maintaining cell shape and anchoring intracellular organelles in place, in the tissues and organs of several species, starting from the early stages of development. This study was aimed at the immunohistochemical investigation of the presence, cellular localization and temporal distribution of the intermediate filaments keratin 8 (CK8), keratin 18 (CK18), keratin 19 (CK19), vimentin, desmin and laminin, all of which contribute to the formation of the cytoskeleton in the rat mammary gland during pregnancy, lactation and involution. On days 7, 14 and 21 of pregnancy (pregnancy period), on day 7 post-delivery (lactation period) and on day 7 post-weaning (involution period), under ketamine hydrochloride (Ketalar-Pfizer) (90 mg/kg) anesthesia, two mammary glands were fully excised from the abdominal region.

View Article and Find Full Text PDF

Understanding climate science is essential for effective policy development, adaptation, mitigation, and risk management. Given the inherent limitations in climate models, this study evaluates the performance of CORDEX Africa regional climate models to simulate precipitation and temperatures over the Melka-Wakena catchment. To accomplish this, the performance evaluation utilizes techniques such as multi-metric weighted ranking to select top-1 (best individual model), specific multi-model ensembles (top-N ensemble), multi-model ensemble, and average hybrid (top-N ensemble with MME) approaches at various temporal scales.

View Article and Find Full Text PDF

Low-intensity transcranial ultrasound stimulation (TUS) is a noninvasive technique that safely alters neural activity, reaching deep brain areas with good spatial accuracy. We investigated the effects of TUS in macaques using a recent metric, the synergy minus redundancy rank gradient, which quantifies different kinds of neural information processing. We analyzed this high-order quantity on the fMRI data after TUS in two targets: the supplementary motor area (SMA-TUS) and the frontal polar cortex (FPC-TUS).

View Article and Find Full Text PDF

Animacy perception, the ability to discern living from non-living entities, is crucial for survival and social interaction, as it includes recognizing abstract concepts such as movement, purpose, and intentions. This process involves interpreting cues that may suggest the intentions or actions of others. It engages the temporal cortex (TC), particularly the superior temporal sulcus (STS) and the adjacent region of the inferior temporal cortex (ITC), as well as the dorsomedial prefrontal cortex (dmPFC).

View Article and Find Full Text PDF

Integrated edge-to-exascale workflow for real-time steering in neutron scattering experiments.

Struct Dyn

November 2024

Second Target Station, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA.

We introduce a computational framework that integrates artificial intelligence (AI), machine learning, and high-performance computing to enable real-time steering of neutron scattering experiments using an edge-to-exascale workflow. Focusing on time-of-flight neutron event data at the Spallation Neutron Source, our approach combines temporal processing of four-dimensional neutron event data with predictive modeling for multidimensional crystallography. At the core of this workflow is the Temporal Fusion Transformer model, which provides voxel-level precision in predicting 3D neutron scattering patterns.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!