Modulating Spin of Atomic Manganese Center for High-Performance Oxygen Reduction Reaction.

Angew Chem Int Ed Engl

Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, 999077, P. R. China.

Published: December 2024

Single atom catalysts (SACs) are promising non-precious catalysts for oxygen reduction reaction (ORR). Unfortunately, the ORR SACs usually suffer from unsatisfactory activity and in particular poor stability. Herein, we report atomically dispersed manganese (Mn) embedded on nitrogen and sulfur co-doped graphene as an efficient and robust electrocatalyst for ORR in alkaline electrolyte, realizing a half-wave potential (E) of 0.883 V vs. reversible hydrogen electrode (RHE) with negligible activity degradation after 40,000 cyclic voltammetry (CV) cycles in 0.1 M KOH. Introducing sulfur (S) to form Mn-S coordination changes the spin state of single Mn atom from high-spin to low-spin, verified by electron paramagnetic resonance (EPR) and magnetic susceptibility measurements as well as density functional theory (DFT) calculations, which effectively optimizes the oxygen intermediates adsorption over the single Mn atomic sites and thus greatly improves the ORR activity.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.202412245DOI Listing

Publication Analysis

Top Keywords

oxygen reduction
8
reduction reaction
8
single atom
8
modulating spin
4
spin atomic
4
atomic manganese
4
manganese center
4
center high-performance
4
high-performance oxygen
4
reaction single
4

Similar Publications

Investigating how the size of carbon support pores influences the three-phase interface of platinum (Pt) particles in fuel cells is essential for enhancing catalyst utilization. This study employed molecular dynamics simulations and density functional theory calculation to examine the effects of mesoporous carbon support size, specifically its pore diameter, on Nafion ionomer distribution, as well as on proton and gas/liquid transport channels, and the utilization of Pt active sites. The findings show that when Pt particles are located within the pores of carbon support (Pt/PC), there is a significant enhancement in the spatial distribution of Nafion ionomer, along with a reduction in encapsulation around the Pt particles, compared to when Pt particles are positioned on the surface or in excessively large pores of the carbon support.

View Article and Find Full Text PDF

The aim of this study was to compare the effectiveness of different types of low level laser treatment (LLLT) in reducing pain levels, changing oxygen saturation and bite force in patients with myofacial pain syndrome (MPS). 45 patients were randomly assigned to three groups: Group 1 (GRR laser, n = 15) received LLLT with Gallium-Aluminium-Arsenide (GaAlAs) diode laser with a wavelength of 904 nm and red laser with a wavelength of 650 nm over masseter muscle region. Group 2 (Nd: YAG laser, n = 15) were treated with Neodymium-doped Yttrium Aluminium Garnet laser with a wavelength of 1064 nm and the same protocol with Nd: YAG laser was performed in the Group 3 (placebo, n = 15) using sham device.

View Article and Find Full Text PDF

Melatonin increases Pb tolerance in P. ovata seedlings via the regulation of growth and stress-related phytohormones, ROS scavenging and genes responsible for melatonin synthesis, metal chelation, and stress defense. Lead (Pb) is a highly toxic heavy metal that accumulates in plants through soil and air contamination and impairs its plant growth and development.

View Article and Find Full Text PDF

Covalent organic frameworks (COFs) are often employed in oxygen reduction reactions (ORR) for hydrogen peroxide production due to their tunable structures and compositions. However, COF electrocatalysts require precise structural engineering, such as heteroatoms or metal site doping, to modulate the reaction pathway during the ORR process. In this work, we designed a tetraphenyl-p-phenylenediamine based COF electrocatalyst, namely TPDA-BDA, which exhibited excellent two-electron (2e) ORR performance with high H2O2 selectivity of 89.

View Article and Find Full Text PDF

Proteomic Analysis Is Needed to Understand the Vulnerability of Sea Anemones to Climate Change.

J Proteome Res

January 2025

Department of Hydrobiology, Division of Biological and Health Sciences, Ecotoxicology Laboratory, Universidad Autónoma Metropolitana, Iztapalapa Unit, Mexico City C. P. 09340, Mexico.

Sea anemones play a crucial role in marine ecosystems. Recent studies have highlighted their physiological and ecological responses to thermal stress. Therefore, our objective was to perform a proteomic analysis of sea anemones in the Gulf of Mexico, subjected to thermal stress, to understand whether these organisms activate specific processes to resist increased temperature.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!