Ultrasound image super-resolution (SR) aims to transform low-resolution images into high-resolution ones, thereby restoring intricate details crucial for improved diagnostic accuracy. However, prevailing methods relying solely on image modality guidance and pixel-wise loss functions struggle to capture the distinct characteristics of medical images, such as unique texture patterns and specific colors harboring critical diagnostic information. To overcome these challenges, this paper introduces the Multi-Modal Regularized Coarse-to-fine Transformer (M2Trans) for Ultrasound Image SR. By integrating the text modality, we establish joint image-text guidance during training, leveraging the medical CLIP model to incorporate richer priors from text descriptions into the SR optimization process, enhancing detail, structure, and semantic recovery. Furthermore, we propose a novel coarse-to-fine transformer comprising multiple branches infused with self-attention and frequency transforms to efficiently capture signal dependencies across different scales. Extensive experimental results demonstrate significant improvements over state-of-the-art methods on benchmark datasets, including CCA-US, US-CASE, and our newly created dataset MMUS1K, with a minimum improvement of 0.17dB, 0.30dB, and 0.28dB in terms of PSNR. Our code and dataset will be available at: https://github.com/eezkni/M2Trans.

Download full-text PDF

Source
http://dx.doi.org/10.1109/JBHI.2024.3454068DOI Listing

Publication Analysis

Top Keywords

coarse-to-fine transformer
12
ultrasound image
12
multi-modal regularized
8
regularized coarse-to-fine
8
image super-resolution
8
m2trans multi-modal
4
transformer ultrasound
4
image
4
super-resolution ultrasound
4
super-resolution aims
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!