Polycystic ovarian syndrome (PCOS) is a prevalent endocrinological disorder affected by ghrelin. This study aimed to investigate the molecular mechanisms underlying the effects of ghrelin on PCOS manifestations in mice and to assess the therapeutic potential of ghrelin. Female C57BL/6 mice were subcutaneously injected with 6 mg/100 g dehydroepiandrosterone (DHEA) for 20 days to induce PCOS. Alterations in reproductive cycles, ovarian morphology, serum sex hormone levels, and related signaling markers were examined. Furthermore, ghrelin-induced effects on granulosa cells and the role of ghrelin/Gq/11/ Yes-associated protein (YAP) signaling were studied by silencing Gαq/11 or YAP using si-RNAs. Finally, we evaluated the therapeutic potential of anti-ghrelin antibodies in DHEA-induced PCOS mice. DHEA administration led to significant PCOS-associated changes including weight gain, disrupted estrous cycles, ovarian morphological alterations, and hormonal imbalances in mice, with elevated Gαq/11 and acylated ghrelin expression, which was also noted in PCOS patients. However, treatment with anti-ghrelin antibodies effectively managed DHEA-induced damage in PCOS mice. In vitro, ghrelin exposure resulted in granulosa cell injury and modulated estrogen receptors alpha (ERα) and YAP protein levels, whereas silencing YAP and Gαq/11 reversed ghrelin-induced detrimental effects and up-regulated ERα expression. This study revealed that DHEA-induced PCOS traits in mice could be improved by anti-ghrelin antibodies, with the ghrelin/Gq/11/YAP signaling pathway identified as a crucial mediator in granulosa cells, affecting ERα transcription to regulate PCOS. These findings suggest a potential therapeutic strategy for the treatment of PCOS.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s13577-024-01127-1DOI Listing

Publication Analysis

Top Keywords

granulosa cells
12
anti-ghrelin antibodies
12
pcos
9
ghrelin/gq/11/yap signaling
8
therapeutic potential
8
cycles ovarian
8
dhea-induced pcos
8
pcos mice
8
mice
6
ghrelin
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!