Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00261-024-04560-w | DOI Listing |
Circ Genom Precis Med
January 2025
Mary and Steve Wen Cardiovascular Division, Department of Medicine, University of California, Los Angeles. (W.F., N.D.W.).
Background: Lp(a; Lipoprotein[a]) is a predictor of atherosclerotic cardiovascular disease (ASCVD); however, there are few algorithms incorporating Lp(a), especially from real-world settings. We developed an electronic health record (EHR)-based risk prediction algorithm including Lp(a).
Methods: Utilizing a large EHR database, we categorized Lp(a) cut points at 25, 50, and 75 mg/dL and constructed 10-year ASCVD risk prediction models incorporating Lp(a), with external validation in a pooled cohort of 4 US prospective studies.
Accurate survival prediction of patients with long-bone metastases is challenging, but important for optimizing treatment. The Skeletal Oncology Research Group (SORG) machine learning algorithm (MLA) has been previously developed and internally validated to predict 90-day and 1-year survival. External validation showed promise in the United States and Taiwan.
View Article and Find Full Text PDFFront Immunol
January 2025
Tianjin Chest Hospital, Tianjin University, Tianjin, China.
Background: Macrophages play a dual role in the tumor microenvironment(TME), capable of secreting pro-inflammatory factors to combat tumors while also promoting tumor growth through angiogenesis and immune suppression. This study aims to explore the characteristics of macrophages in lung adenocarcinoma (LUAD) and establish a prognostic model based on macrophage-related genes.
Method: We performed scRNA-seq analysis to investigate macrophage heterogeneity and their potential pseudotime evolutionary processes.
Front Pharmacol
January 2025
Department of General Surgery, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, China.
Background: Pancreatic cancer remains one of the deadliest malignancies, largely due to its late diagnosis and lack of effective therapeutic targets.
Materials And Methods: Using traditional machine learning methods, including random-effects meta-analysis and forward-search optimization, we developed a robust signature validated across 14 publicly available datasets, achieving a summary AUC of 0.99 in training datasets and 0.
Gates Open Res
January 2025
University of Virginia, Charlottesville, Virginia, USA.
Background: The TaqMan Array Card (TAC) is an arrayed, high-throughput qPCR platform that can simultaneously detect multiple targets in a single reaction. However, the manual post-run analysis of TAC data is time consuming and subject to interpretation. We sought to automate the post-run analysis of TAC data using machine learning models.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!