The diversification of angiosperms has largely been attributed to adaptive radiation of their pollination and mating systems, which are relevant drivers of the macroevolution processes. The fig (Ficus, Moraceae) and fig wasp (Agaonidae, Hymenoptera) interaction is an example of obligate mutualism. Passive and active pollination modes have been associated with morphological traits in both partners. However, more information is required to assess the relationship between floral traits and pollination modes, particularly in Neotropical Ficus species. This study evaluates the morphological traits of figs and fig wasps regarding pollination modes in species belonging to Neotropical Ficus sections (three species each of Americanae and Pharmacosycea). Pollination mode was identified by floral morphology, anther/ovule ratio, and specialized structures fig wasps use for pollen transport (pollen pocket and coxal combs). Fig species in sect. Americanae are actively pollinated because pistillate flowers form a synstigma, present anther/ovule ratios <0.11, and their pollinator Pegoscapus fig wasps have pollen pockets and coxal combs. In contrast, species in sect. Pharmacosycea have free pistillate flowers, with anther/ovule ratios >0.27; they are pollinated by Tetrapus wasps, which lack specialized structures to carry pollen. Each species of Ficus was associated with a single morphospecies of fig wasp. The results support previous contributions that consider reciprocal morphological traits between fig species and their pollinating wasps as evidence of a close co-evolutionary history.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/plb.13712 | DOI Listing |
Biology (Basel)
January 2025
Department of Botany & Forestry, Vidyasagar University, Midnapore 721102, West Bengal, India.
Reproductive traits and plant-pollinator interactions largely depend on seasonal weather conditions, which are species-specific. is an ornamental plant distributed worldwide. There is little information about plant species' reproductive ecology and environmental factors' impact on it.
View Article and Find Full Text PDFmSphere
December 2024
Department of Biology, University of North Carolina, Greensboro, North Carolina, USA.
Unlabelled: Honey bees are the third most economically important agricultural animal in the world due to their role as pollinators. Honey bee pollination services and all hive duties are performed by female workers, while the male drones have one job to mate and share their genetics with a virgin queen from another colony. Thus, drone fitness is directly tied to queen success and colony survival, yet they have been severely understudied compared to their female counterparts.
View Article and Find Full Text PDFEnviron Pollut
January 2025
Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China. Electronic address:
Imidacloprid (IMI), a leading neonicotinoid insecticide, is widely used in China. Nevertheless, owing to its high toxicity to pollinators, regulatory scrutiny of its usage has increased in recent years. Despite this, no relevant issues have been announced in China, and its usage continues to rise.
View Article and Find Full Text PDFEcotoxicol Environ Saf
November 2024
Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia.
European honey bee (Apis mellifera L.) is an essential pollinator that contributes significantly to the global ecosystem and agricultural productivity. However, their population has been facing unprecedented threats, primarily due to their exposure to various pesticides, including organophosphates.
View Article and Find Full Text PDFJ Econ Entomol
December 2024
Jiangxi Province Key Laboratory of Honeybee Biology and Beekeeping, Honeybee Research Institute, Jiangxi Agricultural University, Nanchang, China.
Bumblebees play a significant role as pollinators for many wild plants and cultivated crops, owing to their elongated proboscis, resilience to diverse weather conditions, robustly furred bodies, and their unique capacity for buzz-pollination. To better understand the effect of greenhouse microclimates on bumblebee foraging behavior and working modes, a long-term record of foraging activity for each Bombus terrestris L. (Hymenoptera: Apidae) forager was monitored by the Radio-frequency identification system.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!