Developing a robust sensor for infrared imaging bolometers.

Rev Sci Instrum

Oak Ridge National Laboratory, Oak Ridge, Tennessee 37381, USA.

Published: September 2024

A new type of large area sensor for infrared imaging bolometers has been developed. It replaces the thin and fragile free-standing metal foils, which typically have been used, with a multi-layer coated sapphire (or diamond) substrate. Sapphire is transparent to mid-infrared wavelengths, is robust against transients, and can be thick enough to even be the vacuum window. The primary radiation absorber is still a thin deposited metal layer, but now it is partially insulated from the supporting sapphire substrate by a black (carbon-based) layer, which also acts as a blackbody remitter. Test results indicate 6× more noise equivalent power density (estimated NEPD = 23 W/m2 at 5 ms camera exposure time, foil temperature decay time 60 ms) for a 2 μm gold-coated sapphire disk compared to estimated NEP = 4 W/m2 at 1.8 ms exposure time, with foil decay time 420 ms, for a nominal 2.5 μm thick platinum-free-standing foil.

Download full-text PDF

Source
http://dx.doi.org/10.1063/5.0219535DOI Listing

Publication Analysis

Top Keywords

sensor infrared
8
infrared imaging
8
imaging bolometers
8
exposure time
8
time foil
8
decay time
8
developing robust
4
robust sensor
4
bolometers type
4
type large
4

Similar Publications

Background: Life-space mobility can be a behavioral indicator of loneliness. This study examined the association between life-space mobility measured with motion sensors and weekly vs. annually reported loneliness.

View Article and Find Full Text PDF

This study aims to demonstrate that redox couples, regardless of their electrical charges, are unnecessary for detecting and quantifying electroactive proteins using an electrochemical sensor functionalized with a molecularly imprinted polymer. Our approach involved designing a polydopamine imprinted biosensor for detecting bovine serum albumin as the model protein. Electrochemical measurements were conducted in a phosphate-buffered solution (PBS) and solutions containing the negatively charged hexacyanoferrate, the neutral ferrocene, or the positively charged hexaammineruthenium (III) probes.

View Article and Find Full Text PDF
Article Synopsis
  • A new Sonogel-Carbon (SNGC) electrode, enhanced with the amino acid l-leucine, has been created for detecting homovanillic acid (HVA) effectively.
  • Electrochemical techniques like cyclic voltammetry and impedance spectroscopy confirmed the performance of the SNGC-Leu electrode, which demonstrated a linear detection range for HVA from 0.5 μM to 50 μM and a detection limit of 0.4 μM.
  • The SNGC-Leu sensor showed high accuracy in real applications, successfully measuring HVA in human urine and synthetic cerebrospinal fluid with impressive recovery rates.
View Article and Find Full Text PDF

A new aguanidine-based bis Schiff base for highly selective Al recognition, BSA binding studies and theoretical calculations.

Spectrochim Acta A Mol Biomol Spectrosc

December 2024

School of Agriculture and Bioengineering, Heze University, Heze 274500, China. Electronic address:

Herin, the successful synthesis of a bis Schiff base (L) has been achieved using 2-hydroxy-1-naphthaldehyde and 1,3-diaminoguanidine as raw materials, which was further characterized by infrared spectroscopy, mass spectrometry, and nuclear magnetic resonance hydrogen spectrum. Moreover, spectroscopic experiments demonstrated that the probe L showed good selectivity and visual detectability for Al. Its detection limit (DL) is 2.

View Article and Find Full Text PDF

A comprehensive review of non-invasive optical and microwave biosensors for glucose monitoring.

Biosens Bioelectron

December 2024

Programa de Pós-Graduação em Engenharia Elétrica, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil; Departamento de Engenharia Eletrônica, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil. Electronic address:

Frequent glucose monitoring is essential for effective diabetes management. Currently, glucose monitoring is done using invasive methods such as finger-pricking and subcutaneous sensing. However, these methods can cause discomfort, heighten the risk of infection, and some sensing devices need frequent calibration.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!