Two stage decoherence of optical phonons in long oligomers.

J Chem Phys

Department of Chemistry, Tulane University, New Orleans, Louisiana 70118, USA.

Published: September 2024

Molecular vibrations are generally responsible for chemical energy transport and dissipation in molecular systems. This transport is fast and efficient if energy is transferred by optical phonons in periodic oligomers, but its efficiency is limited by decoherence emerging due to anharmonic interactions with acoustic phonons. Using a general theoretical model, we show that in the most common case of the optical phonon band being narrower than the acoustic bands, decoherence takes place in two stages. The faster stage involves optical phonon multiple forward scattering due to absorption and emission of transverse acoustic phonons, i.e., collective bending modes with a quadratic spectrum; the transport remains ballistic and the speed can be altered. The subsequent slower stage involves phonon backscattering in multiphonon processes involving two or more acoustic phonons resulting in a switch to diffusive transport. If the initially excited optical phonon possesses a relatively small group velocity, then it is accelerated in the first stage due to its transitions to states propagating faster. This theoretical expectation is consistent with the recent measurements of optical phonon transport velocity in alkane chains, increasing with increasing the chain length.

Download full-text PDF

Source
http://dx.doi.org/10.1063/5.0222580DOI Listing

Publication Analysis

Top Keywords

optical phonon
16
acoustic phonons
12
optical phonons
8
stage involves
8
optical
6
phonons
5
transport
5
phonon
5
stage
4
stage decoherence
4

Similar Publications

The analysis of Raman and Infrared (IR) phonons in monolayered tetragonal (Sr, Ba)HfO compounds, which exhibit D symmetry and belong to the I4/mmm phase of space group 139 with Z = 2, has been conducted using normal coordinates. The SrHfO and BaHfO compounds are the first members of the Ruddlesden-Popper (RP) series denoted as (Sr, Ba)HfO with n = 1. Nine Short-Range Force Constants (SRFC) have been included in theoretical calculations to analyze the optical phonons of SrHfO and BaHfO compounds within the I4/mmm phase.

View Article and Find Full Text PDF

A wealth of details regarding an individual's state of health, like a person's respiratory and metabolic functioning, can be studied by analyzing the volatile molecules and atoms in human exhaled breath. Besides, the salinity of seawater is a crucial factor in understanding its characteristics because any variation in the salinity of seawater represents the variations in the hydrological, biological, and chemical distributions. In this paper, a symmetrical one-dimensional phononic structure is theoretically designed using two symmetrical crystals separated with a defective cavity.

View Article and Find Full Text PDF

Molecular dynamics simulations are performed to investigate the influence of isotope substitutions on the Eley-Rideal recombination dynamics of hydrogen isotopes from the (100) and (110) surfaces of tungsten. Dissipation of electrons and phonons is taken into account by, respectively, the local density friction approximation and the general Langevin oscillator, effective models which have been intensively used in recent years. As the coupling to surface phonons and electrons might be altered by the mass combination, the main objective of the paper is to assess the role of dissipation to the surface in the course of abstraction.

View Article and Find Full Text PDF

The behavior of triple-cation mixed halide perovskite solar cells (PSCs) under ultrashort laser pulse irradiation at varying fluences is investigated, with a focus on local heating effects observed in femtosecond transient absorption (TA) studies. The carrier cooling time constant is found to increase from 230 fs at 2 µJ cm⁻ to 1.3 ps at 2 mJ cm⁻ while the charge population decay accelerates from tens of nanoseconds to the picosecond range within the same fluence range.

View Article and Find Full Text PDF

Nanosecond Nanothermometry in an Electron Microscope.

Nano Lett

January 2025

University Paris-Saclay, CNRS, Laboratoire de Physique des Solides, Orsay 91405, France.

Thermal transport in nanostructures plays a critical role in modern technologies. As devices shrink, techniques that can measure thermal properties at nanometer and nanosecond scales are increasingly needed to capture transient, out-of-equilibrium phenomena. We present a novel pump-probe photon-electron method within a scanning transmission electron microscope (STEM) to map temperature dynamics with unprecedented spatial and temporal resolutions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!