Inspired by the intriguing nature of the metal-π interaction in organometallic chemistry, a novel 1D hybrid material has been designed. Herein, a functionalized tellurium allyl macrocycle (TAM) acts as a molecular building block and is knit together via silver-π interaction to obtain Ag-TAM. Ag is coordinated to two allyl groups and a phenyl ring in η mode. Instead of the conventional polymerization strategy, a metal-π interaction is employed to interlink macrocycles. TAM and Ag-TAM showed electrocatalytic capability for the conversion of nitrate to ammonia. Ag-TAM showed an NH yield rate 2-fold greater than TAM with a high faradaic efficiency of 94.6% with good durability, proving that interlinking of macrocycles via metal-π interaction improves the catalytic activity. Detailed periodic density functional theory (DFT) calculations unveil novel mechanistic insights, suggesting cooperative catalysis between neighboring Ag sites and contributing to the enhanced efficiency.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.inorgchem.4c02578 | DOI Listing |
J Biochem Mol Toxicol
January 2025
Zoology and Entomology Department, Faculty of Science, Helwan University, Helwan, Egypt.
Mycobacterium tuberculosis (Mtb) complex, responsible for tuberculosis (TB) infection, continues to be a predominant global cause of mortality due to intricate host-pathogen interactions that affect disease progression. MicroRNAs (miRNAs), essential posttranscriptional regulators, have become pivotal modulators of these relationships. Recent findings indicate that miRNAs actively regulate immunological responses to Mtb complex by modulating autophagy, apoptosis, and immune cell activities.
View Article and Find Full Text PDFMol Plant Microbe Interact
January 2025
University of Cologne, Institute for Plant Sciences, Cologne, Germany.
Pathogens manipulate host physiology through the secretion of virulence factors (effectors) to invade and proliferate on the host. The molecular functions of effectors inside plant hosts have been of interest in the field of molecular plant-microbe interactions. Obligate biotrophic pathogens, such as rusts and powdery mildews, cannot proliferate outside of plant hosts.
View Article and Find Full Text PDFMol Biol Rep
January 2025
Mahatma Gandhi Medical Advanced Research Institute (MGMARI), Sri Balaji Vidyapeeth (Deemed to be University), Puducherry, 607402, India.
MicroRNAs (miRNAs) and transfer RNA-derived stress-induced RNAs (tiRNAs) have emerged as crucial players in the post-transcriptional regulation of gene expression in various cellular processes, including immunity and host defense against infections. In recent years, increasing evidence has highlighted their complex role in influencing the host response during viral and bacterial infections. miRNAs have been shown to play multiple roles in host-pathogen interaction like TLR activation and altered disease virulence during bacterial infections.
View Article and Find Full Text PDFThe kinetically-derived maximal dose (KMD) is defined as the maximum external dose at which kinetics are unchanged relative to lower doses, e.g., doses at which kinetic processes are not saturated.
View Article and Find Full Text PDFArch Microbiol
January 2025
Department of Botany, CMS College Kottayam, Kottayam, Kerala, 686001, India.
Among all photosynthetic life forms, cyanobacteria exclusively possess a water-soluble, light-sensitive carotenoprotein complex known as orange carotenoid proteins (OCPs), crucial for their photoprotective mechanisms. These protein complexes exhibit both structural and functional modularity, with distinct C-terminal (CTD) and N-terminal domains (NTD) serving as light-responsive sensor and effector regions, respectively. The majority of cyanobacterial genomes contain genes for OCP homologs and related proteins, highlighting their essential role in survival of the organism over time.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!