Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Stable isotope techniques are precise methods for studying various aspects of hydrology, such as precipitation characteristics. However, understanding the variations in the stable isotope content in precipitation is challenging in Iran due to numerous climatic and geographic factors. To address this, forty-two precipitation sampling stations were selected across Iran to assess the fractional importance of these climatic and geographic parameters influencing stable isotopes. Additionally, deep learning models were employed to simulate the stable isotope content, with missing data initially addressed using the predictive mean matching (PMM) method. Subsequently, the recursive feature elimination (RFE) technique was applied to identify influential parameters impacting Iran's precipitation stable isotope content. Following this, long short-term memory (LSTM) and deep neural network (DNN) models were utilized to predict stable isotope values in precipitation. Interpolated maps of these values across Iran were developed using inverse distance weighting (IDW), while an interpolated reconstruction error (RE) map was generated to quantify deviations between observed and predicted values at study stations, offering insights into model precision. Validation using evaluation metrics demonstrated that the model based on DNN exhibited higher accuracy. Furthermore, RE maps confirmed acceptable accuracy in simulating the stable isotope content, albeit with minor weaknesses observed in simulation maps. The methodology outlined in this study holds promise for application in regions worldwide characterized by diverse climatic conditions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/10256016.2024.2396302 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!