A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Hierarchical structures and magnetism of Co clusters: a perspective from integration of deep learning and a hybrid differential evolution algorithm. | LitMetric

Theoretically determining the lowest-energy structure of a cluster has been a persistent challenge due to the inherent difficulty in accurate description of its potential energy surface (PES) and the exponentially increasing number of local minima on the PES with the cluster size. In this work, density-functional theory (DFT) calculations of Co clusters were performed to construct a dataset for training deep neural networks to deduce a deep potential (DP) model with near-DFT accuracy while significantly reducing computational consumption comparable to classic empirical potentials. Leveraging the DP model, a high-efficiency hybrid differential evolution (HDE) algorithm was employed to search for the lowest-energy structures of Co ( = 11-50) clusters. Our results revealed 38 of these clusters superior to those recorded in the Cambridge Cluster Database and identified diverse architectures of the clusters, evolving from layered structures for = 11-27 to Marks decahedron-like structures for = 28-42 and to icosahedron-like structures for = 43-50. Subsequent analyses of the atomic arrangement, structural similarity, and growth pattern further verified their hierarchical structures. Meanwhile, several highly stable clusters, , Co, Co, Co, Co, and Co, were discovered by the energetic analyses. Furthermore, the magnetic stability of the clusters was verified, and a competition between the coordination number and bond length in affecting the magnetic moment was observed. Our study provides high-accuracy and high-efficiency prediction of the optimal structures of clusters and sheds light on the growth trend of Co clusters containing tens of atoms, contributing to advancing the global optimization algorithms for effective determination of cluster structures.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d4nr02431aDOI Listing

Publication Analysis

Top Keywords

clusters
9
hierarchical structures
8
hybrid differential
8
differential evolution
8
structures
7
structures magnetism
4
magnetism clusters
4
clusters perspective
4
perspective integration
4
integration deep
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!