Objective: Atherosclerosis (AS) is an inflammatory disease of arterial intima driven by lipids. Liver X receptor alpha (LXRα) and peroxisome proliferator-activated receptor alpha (PPARα) agonists are limited in the treatment of AS due to their off-target effects and serious side effects. Therefore, this study was designed to construct a novel nanoparticle (NP) and evaluate its mechanism of action on inflammation inhibition and lipid reduction in AS.

Methods: We synthesized cRGD-platelet@MnO/MSN@PPARα/LXRα NPs (cRGD-platelet- NPs) and confirmed their size, safety, and targeting ability through various tests, including dynamic light scattering and immunofluorescence. In vivo and in vitro experiments assessed cell proliferation, apoptosis, inflammation, and plaque formation. Finally, the NF-κB signaling pathway expression in rat aorta was determined using a western blot.

Results: The synthesis of cRGD-platelet-NPs was successful; the particle size was approximately 150 nm, and the PDI was below 0.3. They could be successfully absorbed by cells, exhibiting high safety in vivo and in vitro. The cRGD-platelet-NPs successfully reduced plaque formation, improved lipid profiles by lowering LDL-cholesterol, total cholesterol, and triglycerides, and raised HDL-cholesterol levels. Additionally, they decreased inflammatory markers in the serum and aortic tissue, suggesting reduced inflammation. Immunohistochemistry and western blot analyses indicated that these NPs could not only promote M2 macrophage polarization but also suppress the NF-κB signaling pathway.

Conclusion: The newly developed cRGD-platelet-NPs with high safety are a promising approach to AS treatment, which can regulate ABCA1, reduce the formation of AS plaques, and enhance cholesterol efflux. The mechanism may involve the suppression of the NF-κB signaling pathway.

Download full-text PDF

Source
http://dx.doi.org/10.2174/0113892010314993240819065655DOI Listing

Publication Analysis

Top Keywords

nf-κb signaling
12
receptor alpha
8
vivo vitro
8
plaque formation
8
signaling pathway
8
high safety
8
crgd-platelet@mno/msn@pparα/lxrα nanoparticles
4
nanoparticles improve
4
improve atherosclerosis
4
atherosclerosis rats
4

Similar Publications

Background: This study aimed to provide a comprehensive review of adverse events (AEs) associated with factor Xa (FXa) inhibitors in pediatric patients.

Methods: We searched PubMed, Embase, Cochrane Library, ClinicalTrials.gov, and the European Union Clinical Trials Register for English-language records from the establishment of the database up to October 17, 2023.

View Article and Find Full Text PDF

TRPV4 as a Novel Regulator of Ferroptosis in Colon Adenocarcinoma: Implications for Prognosis and Therapeutic Targeting.

Dig Dis Sci

January 2025

Ningxia Medical University, Xing Qing Block, Shengli Street No.1160, Yin Chuan City, 750004, Ningxia Province, People's Republic of China.

Background: Colon adenocarcinoma (COAD) is a leading cause of cancer-related mortality worldwide. Transient receptor potential vanilloid 4 (TRPV4), a calcium-permeable non-selective cation channel, has been implicated in various cancers, including COAD. This study investigates the role of TRPV4 in colon adenocarcinoma and elucidates its potential mechanism via the ferroptosis pathway.

View Article and Find Full Text PDF

Introduction: Colorectal cancer (CRC) is the second most common cause of cancer-related deaths globally. The gut microbiota, along with adenomatous polyps (AP), has emerged as a plausible contributor to CRC progression. This study aimed to scrutinize the impact of the FadA antigen derived from Fusobacterium nucleatum on the expression levels of the ANXA2 ceRNA network and assess its relevance to CRC advancement.

View Article and Find Full Text PDF

The nutrient germinant receptors (GRs) in spores of Bacillus species consist of a cluster of three proteins- designated A, B, and C subunits- that play a critical role in initiating the germination of dormant spores in response to specific nutrient molecules. The Bacillus cereus GerI GR is essential for inosine-induced germination; however, the roles of the individual subunits and the mechanism by which germinant binding activates GR function remain unclear. In this study, we report the backbone chemical shift assignments of the N-terminal domain (NTD) of the A subunit of GerI (GerIA).

View Article and Find Full Text PDF

Objective: Rheumatoid arthritis (RA) is an autoimmune condition that causes severe joint deformities and impaired functionality, affecting the well-being and daily life of individuals. Consequently, there is a pressing demand for identifying viable therapeutic targets for treating RA. This study aimed to explore the molecular mechanisms of osteoclast differentiation in PBMC from patients with RA through transcriptome sequencing and bioinformatics analysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!