Effect of graphene oxide in an injectable hydrogel on the osteogenic differentiation of mesenchymal stem cells.

J Biomater Sci Polym Ed

Department of Trauma Center, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China.

Published: September 2024

Graphene oxide (GO) is widely used in bone tissue engineering due to its good biocompatibility and proliferation, and is often used in combination with other hydrogels, which not only reduces the cytotoxicity of GO but also improves the mechanical properties of the hydrogels. We developed injectable carboxymethyl chitosan (CMC)/hydroxyethyl cellulose (HEC)/β-tricalcium phosphate (β-TCP)/GO hydrogel hydrogen bonding cross-linked between (CMC) and (HEC), also, calcium cross-linked by β-TCP was also involved to further improvement of mechanical properties of the hydrogel, and incorporate different concentration of GO in these hydrogel systems. The characterization of the novel hydrogel was tested by scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FT-IR). The swelling ratio and mechanical properties were investigated, the results showed that the addition of GO was able to reduce the swelling rate of hydrogels and improve their mechanical properties, with the best effect in the case of 1 mg/mL content. experimental studies showed that the hydrogel significantly promoted the osteogenic differentiation of rat bone marrow mesenchymal stem cells (rBMSCs), with the best effect at a concentration of 2 mg/mL. The results of the cellular experiments were similar. Therefore, the novel environment-friendly and non-toxic injectable CMC/HEC/β-TCP/GO hydrogel system may have potential applications in bone tissue engineering.

Download full-text PDF

Source
http://dx.doi.org/10.1080/09205063.2024.2397211DOI Listing

Publication Analysis

Top Keywords

mechanical properties
16
graphene oxide
8
osteogenic differentiation
8
bone tissue
8
tissue engineering
8
hydrogel
7
oxide injectable
4
injectable hydrogel
4
hydrogel on the
4
on the osteogenic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!