Background Neurons can be effectively regulated by serotonin and dopamine. Their role in anti-inflammatory pathways opens new doors for therapeutic research, particularly in chemotherapeutics. The present study investigated serotonin's role in suppressing inflammation and its potential anticancer effects in KERATIN-forming tumor cell line HeLa cells (KB cells). Methods - in vitro and in silico analysis The study delved further into the molecular mechanisms by assessing the expression levels of key markers involved in inflammation and cancer progression, such as B-cell leukemia/lymphoma 2 protein (BCl-2), tumor necrosis factor-alpha (TNF-α) and Interleukin-6 (IL-6) using Real-time reverse-transcriptase-polymerase chain reaction at concentrations below the IC (50 and 100 µg/ml). The binding capability of serotonin (CID 5202) with glycoform of human interleukin 6 (PDB: 7NXZ) was analyzed with the help of Schrodinger molecular suites. Results The findings showcased serotonin's potent growth inhibition in KB cells, with an IC value of 225±3.1µg/ml. Additionally, it demonstrated a multifaceted impact by downregulating the expression of BCl-2, TNF-α, and IL-6, pivotal factors in cancer cell survival and inflammation regulation. The docking score was - 5.65 (kcal/mol) between serotonin and glycoform of Human Interleukin 6. It is bound with ASN 143 by two hydrogen bonds. Thus, molecular docking analysis showed an efficient bounding pattern. The research findings indicate that serotonin successfully blocks NF-κB pathways in KB cells, underscoring its therapeutic promise against colon cancer and offering vital information for additional clinical investigation. Conclusion According to the study's conclusion, serotonin has a remarkable anticancer potential by effectively blocking NF-κB B pathways in KB cells, revealing its promising potential as a therapeutic agent against colon cancer. These comprehensive findings offer significant insights into serotonin's intricate molecular interactions and its profound impact on cancer-related signaling pathways, paving the way for further exploration and potential clinical applications in cancer treatment strategies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11366720 | PMC |
http://dx.doi.org/10.7759/cureus.66040 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!