Antimony chalcogenides (Sb(S Se )) have drawn attention as a potential semiconducting substance for heterojunction photovoltaic (PV) devices due to the remarkable optoelectronic properties and wide range of bandgaps spanning from 1.1 to 1.7 eV. In this investigation, SCAPS-1D simulation software is employed to design an earth abundant, non-toxic, and cost-effective antimony sulfide-selenide (Sb(S,Se))-based thin-film solar cell (TFSC), where tungsten disulfide (WS) and cuprous oxide (CuO) are used as an electron transport layer (ETL) and hole transport layer (HTL), respectively. The PV performance parameters such as power conversion efficiency, open-circuit voltage ( ), short-circuit current ( ), and fill factor (FF) are assessed through adjustments in material properties including thickness, acceptor concentration, bulk defect density of the absorber, defect state of absorber/ETL and HTL/absorber interfaces, operating temperature, work function of the rear electrode, and cell resistances. This analysis aims to validate their collective impact on the overall efficiency of the designed Ni/CuO/Sb(S,Se)/WS/FTO/Al TFSC. The optimized physical parameters for the Sb(S,Se) TFSC lead to impressive PV outputs with an efficiency of 30.18%, of 1.02 V, of 33.65 mA cm, and FF of 87.59%. Furthermore, an artificial neural network (ANN) machine learning (ML) algorithm predicts the optimal PCE by considering five semiconductor parameters: absorber layer thickness, bandgap, electron affinity, electron mobility, and hole mobility. This model, which has an approximate correlation coefficient ( ) of 0.999, is able to predict the data with precision. This numerical analysis provides valuable data for the fabrication of an environmentally friendly, economical, and incredibly non-toxic efficient heterojunction TFSC.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11367396PMC
http://dx.doi.org/10.1039/d4ra03340jDOI Listing

Publication Analysis

Top Keywords

machine learning
8
thin-film solar
8
material properties
8
transport layer
8
utilizing machine
4
learning enhance
4
enhance performance
4
performance thin-film
4
solar cells
4
cells based
4

Similar Publications

Background: Delayed cerebral ischemia (DCI) is a primary contributor to death after subarachnoid hemorrhage (SAH), with significant incidence. Therefore, early determination of the risk of DCI is an urgent need. Machine learning (ML) has received much attention in clinical practice.

View Article and Find Full Text PDF

Background: Depression significantly impacts an individual's thoughts, emotions, behaviors, and moods; this prevalent mental health condition affects millions globally. Traditional approaches to detecting and treating depression rely on questionnaires and personal interviews, which can be time consuming and potentially inefficient. As social media has permanently shifted the pattern of our daily communications, social media postings can offer new perspectives in understanding mental illness in individuals because they provide an unbiased exploration of their language use and behavioral patterns.

View Article and Find Full Text PDF

Background: Patient engagement is a critical but challenging public health priority in behavioral health care. During telehealth sessions, health care providers need to rely predominantly on verbal strategies rather than typical nonverbal cues to effectively engage patients. Hence, the typical patient engagement behaviors are now different, and health care provider training on telehealth patient engagement is unavailable or quite limited.

View Article and Find Full Text PDF

Economic losses in cattle farms are frequently associated with failed pregnancies. Some studies found that the transcriptomic profiles of blood and endometrial tissues in cattle with varying pregnancy outcomes display discrepancies even before artificial insemination (AI) or embryo transfer (ET). In the study, 330 samples from seven distinct sources and two tissue types were integrated and divided into two groups based on the ability to establish and maintain pregnancy after AI or ET: P (pregnant) and NP (nonpregnant).

View Article and Find Full Text PDF

Enhancing beer authentication, quality, and control assessment using non-invasive spectroscopy through bottle and machine learning modeling.

J Food Sci

January 2025

Digital Agriculture, Food and Wine Research Group, School of Agriculture, Food and Ecosystem Science, Faculty of Science, The University of Melbourne, Melbourne, Victoria, Australia.

Fraud in alcoholic beverages through counterfeiting and adulteration is rising, significantly impacting companies economically. This study aimed to develop a method using near-infrared (NIR) spectroscopy (1596-2396 nm) through the bottle, along with machine learning (ML) modeling for beer authentication, quality traits, and control assessment. For this study, 25 commercial beers from different brands, styles, and three types of fermentation were used.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!