Food analysis and food quality monitoring are vital aspects of the food industry, ensuring the safety and authenticity of various food products, from packaged goods to fast food. In this comprehensive review, we explore the applications of chemically modified Screen-Printed Electrodes (SPEs) in these critical domains. SPEs have become extremely useful devices for ensuring food safety and quality assessment because of their adaptability, affordability, and convenience of use. The Introduction opens the evaluation, that covers a wide spectrum of foods, encompassing packaged, junk food, and food quality concerns. This sets the stage for a detailed exploration of chemically modified SPEs, including their nature, types, utilization, and the advantages they offer in the context of food analysis. Subsequently, the review delves into the multitude applications of SPEs in food analysis, ranging from the detection of microorganisms such as bacteria and fungi, which are significant indicators of food spoilage and safety, to the identification of pesticide residues, food colorants, chemicals, toxins, and antibiotics. Furthermore, chemically modified SPEs have proven to be invaluable in the quantification of metal ions and vitamins in various food matrices, shedding light on nutritional content and quality.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11367709 | PMC |
http://dx.doi.org/10.1039/d4ra02470b | DOI Listing |
Chem Commun (Camb)
January 2025
College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), State Key Laboratory of Organic Electronics and Information Displays, Nanjing University of Posts & Telecommunications (NJUPT), Nanjing, 210023, China.
Traditional sensors struggle in complex human environments, particularly with humidity and strain detection requiring high sensitivity and robust anti-interference. This work introduces a flexible, miniaturized, low-cost dual-mode sensor that combines a novel resonator structure with a chemically modified conducting polymer, enabling simultaneous strain and humidity detection alongside high anti-interference performance sensitivity and wireless transmission.
View Article and Find Full Text PDFJ Pestic Sci
November 2024
Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University.
We investigated whether various modified cyclodextrins (CDs) and emulsifiers could be applied as dispersing agents in ready biodegradability tests of poorly water-soluble substances. Trimethylated α-, β-, and γ-CDs and partially methylated β-CD were not biodegraded in the test period but accelerated the biodegradation of octabenzone and anthraquinone. The process by which trimethylated α-, β-, and γ-CDs enhance the biodegradation of test substances has been partially uncovered.
View Article and Find Full Text PDFChem Sci
January 2025
School of Biomedical Engineering, Shanghai Jiao Tong University Shanghai 200240 China
Intracellular viscosity is a critical microenvironmental factor in various biological systems, and its abnormal increase is closely linked to the progression of many diseases. Therefore, precisely controlling the release of bioactive molecules in high-viscosity regions is vital for understanding disease mechanisms and advancing their diagnosis and treatment. However, viscosity alone cannot directly trigger chemical reactions.
View Article and Find Full Text PDFChem Sci
January 2025
University of Missouri - Columbia, Department of Chemistry USA
Critical Assessment of Computational Hit-Finding Experiments (CACHE) Challenges emerged as real-life stress tests for computational hit-finding strategies. In CACHE Challenge #1, 23 participants contributed their original workflows to identify small-molecule ligands for the WD40 repeat (WDR) of LRRK2, a promising Parkinson's target. We applied the FRASE-based hit-finding robot (FRASE-bot), a platform for interaction-based screening allowing a drastic reduction of the explorable chemical space and a concurrent detection of putative ligand-binding sites.
View Article and Find Full Text PDFHeliyon
January 2025
Department of Soil Science, Faculty of Agriculture, University of Jiroft, Jiroft, 7867161167, Iran.
This study focuses on developing biochar-based adsorbents with high adsorption capacity and rapid adsorption rates for removing boron from aqueous solutions. Hydroxy-enriched biochar composites (BC (carboxylated biochar), BC-PDA (polydopamine loaded biochar), MBC-PDA (polydopamine loaded magnetic biochar), BC-AlOOH (AlOOH loaded biochar), and BC-ZnCl (biochar modified by ZnCl)) were synthesized specifically for boron adsorption to utilize the superior adsorption capacity of biochar. All adsorbents were synthesized using straightforward experimental techniques from date palm cellulosic fibers as promising lignocellulose feedstock and subjected to various characterization methods.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!