Emerging technologies are changing hand surgery by improving surgical precision, minimizing tissue disruption, and expediting patient recovery. These advancements have the potential to revolutionize surgical procedures, patient outcomes, and rehabilitation processes. However, there are still challenges that need to be addressed before these technologies can be widely adopted. These challenges include the learning curve for surgeons, high costs, and ethical considerations. Future research should focus on addressing the limitations of these technologies, exploring their long-term effects, and evaluating their cost-effectiveness. To successfully implement them, a collaborative approach involving clinicians, researchers, engineers, and policymakers is necessary. This review provides an overview of current and future trends in emerging technologies for hand orthopedic surgery.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11368481PMC
http://dx.doi.org/10.31661/gmj.v13i.3325DOI Listing

Publication Analysis

Top Keywords

emerging technologies
12
technologies hand
8
hand orthopedic
8
orthopedic surgery
8
surgery current
4
current trends
4
trends future
4
future directions
4
directions emerging
4
technologies
4

Similar Publications

Ways to Measure Metals: From ICP-MS to XRF.

Curr Environ Health Rep

January 2025

School of Health Sciences, Purdue University, West-Lafayette, IN, 47906, USA.

Purpose Of Review: This review explores the use of Inductively Coupled Plasma Mass Spectrometry (ICP-MS) and X-ray Fluorescence (XRF) for quantifying metals and metalloids in biological matrices such as hair, nails, blood, bone, and tissue. It provides a comprehensive overview of these methodologies, detailing their technological limitations, application scopes, and practical considerations for selection in both laboratory and field settings. By examining traditional and novel aspects of each method, this review aims to guide researchers and clinical practitioners in choosing the most suitable analytical tool based on their specific needs for sensitivity, precision, speed, and sample preparation.

View Article and Find Full Text PDF

Regenerable chitosan-biochar-TiO composite sponges for hazardous pollutants removal from water: The case of carbamazepine.

Int J Biol Macromol

January 2025

Università degli Studi "Aldo Moro" di Bari, Dipartimento di Chimica, Via Orabona, 4, 70126 Bari, Italy; CNR NANOTEC - Istituto di Nanotecnologia - Sede Secondaria di Bari c/o Dipartimento di Chimica, Università degli Studi di Bari "Aldo Moro", 70126 Bari, Italy.

Water pollution is a significant worldwide problem, and research studies in this field are still in progress to find strategies for removing pollutants from water. Among the others, adsorption process seems to exhibit several advantages, especially when biomasses are in use. This work proposes biochar from olive pomace pyrolysis for adsorbing contaminants from water, in synergistic combination with TiO, for constituting water-stable and recyclable composite chitosan-based sponges.

View Article and Find Full Text PDF

Chronic stress profoundly affects the structure and function of the prefrontal cortex (PFC), a brain region critical for executive functions and emotional regulation. This review synthesizes current knowledge on stress-induced PFC plasticity, encompassing structural, functional, and molecular changes. We examine how chronic stress leads to dendritic atrophy, spine loss, and alterations in neuronal connectivity within the PFC, particularly affecting the medial PFC.

View Article and Find Full Text PDF

A review of the potential of seawater brine for enhancing food security in hot arid climates: A case study of Qatar.

J Environ Manage

January 2025

Division of Sustainable Development, College of Science and Engineering, Hamad Bin Khalifa University, Qatar Foundation, Education City, Doha, Qatar.

This study explores Qatar's utilisation of seawater to support food security, emphasising the innovative strategies and technological advancements to address the environmental and agricultural challenges posed by rejected brine from desalination processes. It examines various brine treatment and disposal methodologies, highlighting the environmental impacts and proposing sustainable solutions to mitigate these effects. The discussion further explores the potential of electrodialysis and other emerging technologies for converting rejected brine into valuable agricultural resources, thereby contributing to food security in arid regions.

View Article and Find Full Text PDF

Advanced technologies in InGaN micro-LED fabrication to mitigate the sidewall effect.

Light Sci Appl

January 2025

Advanced Semiconductor Laboratory, Electrical and Computer Engineering Program, CEMSE Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia.

The size of InGaN micro-LEDs is continuously decreasing to meet the demands of various emerging applications, especially in tiny micro-displays such as AR/VR. However, the conventional pixel definition based on plasma etching significantly damages the mesa sidewalls, leading to a severe reduction in efficiency as the micro-LED size decreases. This seriously impedes the development and application of micro-LEDs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!