This research investigated the effectiveness of radio frequency (RF) heating as a treatment for lead-contaminated soil, assessing its impact through dielectric constant measurements. Using water-soluble lead (II) acetate trihydrate, the study analyzed the impact of RF heating on soil dielectric properties under various soil moisture conditions (high, medium, and low) and electric field strengths (112.5, 150, 225, and 450 kV/m). The results indicated that soil temperature increased with lead concentration, highlighting significant changes in soil thermodynamics. Under high-humidity conditions, temperature increases were more pronounced, suggesting that higher lead concentrations elevate soil temperatures. Moreover, RF heating consistently reduced the dielectric constant as lead concentration increased, which was especially evident at higher electric field strengths. The study found that the soil resistivity approached that of uncontaminated soil, particularly at 450 kV/m electric field strength, with the highest removal rate of 46.154%. This investigation provides valuable insights into the application of RF heating for soil quality improvement in lead-contaminated environments, demonstrating how dielectric properties can reflect those of uncontaminated soil.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11367521 | PMC |
http://dx.doi.org/10.1016/j.heliyon.2024.e35787 | DOI Listing |
Commun Mater
January 2025
Silicon Austria Labs GmbH, Graz, Austria.
Perovskites at the crossover between ferroelectric and relaxor are often used to realize dielectric capacitors with high energy and power density and simultaneously good efficiency. Lead-free BiNaTiO is gaining importance in showing an alternative to lead-based devices. Here we show that ()BiNaTiO - BaZr Ti O (best: 0.
View Article and Find Full Text PDFJ Fluoresc
January 2025
Department of Physics, Jnana Bharathi Campus, Bangalore University, Bengaluru, 560056, India.
This investigation delves into the extraction of polyphenols from the flowers of Tabebuia rosea using a basic maceration approach with acetone, ethanol, and methanol as solvents. The spectroscopic analysis of the dye obtained confirms the existence of functional groups in the polyphenol extract. The study also explores optoelectronic, fluorescence, and photometric characteristics associated with polyphenols.
View Article and Find Full Text PDFAdv Mater
January 2025
Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China.
Ionic conductive hydrogels have emerged as an excellent option for constructing dielectric layers of interfacial iontronic sensors. Among these, gradient ionic hydrogels, due to the intrinsic gradient elastic modulus, can achieve a wide range of pressure responses. However, the fabrication of gradient hydrogels with optimal mechanical and sensing properties remains a challenge.
View Article and Find Full Text PDFDalton Trans
January 2025
Graduate School of Engineering and Science, Shibaura Institute of Technology, 307 Fukasaku, Minuma, Saitama, 337-8570, Japan.
We successfully synthesized perovskite-type RbTaO at 1173 K under 4 GPa. RbTaO crystalized as a cubic system (3̄ space group (SG), = 4.04108(3) Å) at 300 K in contrast to the orthorhombic perovskite-type RbNbO prepared under the same conditions.
View Article and Find Full Text PDFSci Rep
January 2025
School of Electrical Engineering, University of Tehran, Tehran, 14179-35840, Iran.
This paper introduces an analytical method for studying power transmission through an infinite array of helical-shaped metal particles in a lossy dielectric medium. While the assessment of composite slabs' transmitted power has been extensively researched in the electromagnetic interference (EMI) shielding field, many studies lack an adequate problem description. The primary inadequacy of these studies is the need for an analytical framework.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!