Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The present study employed a comprehensive approach of network pharmacology, molecular dynamic simulation and assays to investigate the underlying mechanism of the anti-osteoarthritic potential of extract (VTE). Thirteen active compounds of VTE were retrieved from the literature and the IMPPAT database. All of these passed the drug likeness and oral bioavailability parameters. A total of 535 VTE targets and 2577 osteoarthritis related targets were obtained. The compound-target-disease network analysis revealed vanillin, daucosterol, gigantol and syringaldehyde as the core key components. Protein-protein interaction analysis revealed BCL2, FGF2, ICAM 1, MAPK1, MMP1, MMP2, MMP9, COX2, STAT3 and ESR1 as the hub genes. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis revealed AGE-RAGE signalling pathway, HIF-1 signalling pathway and ESR signalling pathway as the major signalling pathway of VTE involved in treating osteoarthritis. Molecular docking analysis showed daucosterol and gigantol to have good binding affinity with BCL2, ESR1 and MMP9, and the results were further confirmed through molecular dynamics simulation analysis. The mechanism predicted by network pharmacology was validated on IL-1β-induced SW982 synovial cells. VTE did not show any cytotoxicity and inhibited the migration of SW982 cells. VTE inhibited the expression level of IL-6, IL-8, TNF-α, PGE-2, MMP-2 and MMP-9 in a dose-dependent manner. VTE inhibited nuclear translocation of NF- κβ and suppressed phosphorylation of p38, extracellular signal-regulated kinase (ERK), and c-Jun NH2-terminal kinase (JNK) of the mitogen-activated protein kinase (MAPK) signalling pathway. The results showed that VTE exerted an anti-osteoarthritic effect by a multi-target, multi-component and multi-signalling pathway approach.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11367146 | PMC |
http://dx.doi.org/10.1016/j.heliyon.2024.e35971 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!