The current popular traffic classification methods based on feature engineering and machine learning are difficult to obtain suitable traffic feature sets for multiple traffic classification tasks. Besides, data privacy policies prohibit network operators from collecting and sharing traffic data that might compromise user privacy. To address these challenges, we propose FedETC, a federated learning framework that allows multiple participants to learn global traffic classifiers, while keeping locally encrypted traffic invisible to other participants. In addition, FedETC adopts one-dimensional convolutional neural network as the base model, which avoids manual traffic feature design. In the experiments, we evaluate the FedETC framework for the tasks of both application identification and traffic characterization in a publicly available real-world dataset. The results show that FedETC can achieve promising accuracy rates that are close to centralized learning schemes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11367454 | PMC |
http://dx.doi.org/10.1016/j.heliyon.2024.e35962 | DOI Listing |
Sci Rep
January 2025
Department of Computer Science and Engineering, Kebri Dehar University, 250, Somali, Ethiopia.
In recent times, there has been rapid growth of technologies that have enabled smart infrastructures-IoT-powered smart grids, cities, and healthcare systems. But these resource-constrained IoT devices cannot be protected by existing security mechanisms against emerging cyber threats. The aim of the paper is to present an improved security for smart healthcare IoT systems by developing an architecture for IADCL.
View Article and Find Full Text PDFEntropy (Basel)
December 2024
Henan International Joint Laboratory of Intelligent Network Theory and Key Technology, Henan University, Kaifeng 475001, China.
Federated learning enables devices to train models collaboratively while protecting data privacy. However, the computing power, memory, and communication capabilities of IoT devices are limited, making it difficult to train large-scale models on these devices. To train large models on resource-constrained devices, federated split learning allows for parallel training of multiple devices by dividing the model into different devices.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Computer Science, College of Computer and Information Sciences, Majmaah University, 11952, Al-Majmaah, Saudi Arabia.
The rapid expansion of IoT networks, combined with the flexibility of Software-Defined Networking (SDN), has significantly increased the complexity of traffic management, requiring accurate classification to ensure optimal quality of service (QoS). Existing traffic classification techniques often rely on manual feature selection, limiting adaptability and efficiency in dynamic environments. This paper presents a novel traffic classification framework for SDN-based IoT networks, introducing a Two-Level Fused Network integrated with a self-adaptive Manta Ray Foraging Optimization (SMRFO) algorithm.
View Article and Find Full Text PDFPLoS One
January 2025
School of Automobile and Traffic Engineering, Nanjing Forestry University, Nanjing, Jiangsu, China.
PLoS One
January 2025
Department of Industrial Engineering, Sharif University of Technology, Tehran, Iran.
Predicting incident duration and understanding incident types are essential in traffic management for resource optimization and disruption minimization. Precise predictions enable the efficient deployment of response teams and strategic traffic rerouting, leading to reduced congestion and enhanced safety. Furthermore, an in-depth understanding of incident types helps in implementing preventive measures and formulating strategies to alleviate their influence on road networks.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!