Despite significant progress in the medical field, there is still a pressing need for minimal-invasive tools to assist with decision-making, especially in cases of polytrauma. Our team explored the potential of serum-derived large extracellular vesicles, so called microparticles/microvesicles/ectosomes, to serve as a supportive tool in decision-making in polytrauma situations. We focused on whether monocyte derived large EVs may differentiate between polytrauma patients with internal organ injury (ISS > 15) and those without. Thus, we compared our EV data to soluble biomarkers such as tumour necrosis factor alpha (TNF alpha) and Interleukin-8 (IL-8). From the blood of 25 healthy and 26 patients with polytrauma large EVs were isolated, purified, and characterized. TNF alpha and IL-8 levels were quantified. We found that levels of these monocyte derived large EVs were significantly higher in polytrauma patients with internal organ damage and correlated with the ISS. Interestingly, we also observed a decline in AnnVCD14 large EVs during normal recovery after trauma. Thus, inflammatory serological markers as TNF alpha and as IL-8 demonstrated an inability to discriminate between polytrauma patients with or without internal organ damage, such as spleen, kidney, or liver lacerations/ruptures. However, TNF and IL-8 levels were elevated in polytrauma cases overall when contrasted with healthy non-traumatic controls. These findings suggest that delving deeper into the potential of AnnV large EVs derived from monocytes could highly beneficial in the managment of polytrauma, potentially surpassing the efficacy of commonly used serum markers.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11367151 | PMC |
http://dx.doi.org/10.1002/jex2.70005 | DOI Listing |
J Biol Eng
January 2025
Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, 24016, USA.
Extracellular vesicles (EVs) are widely investigated for their implications in cell-cell signaling, immune modulation, disease pathogenesis, cancer, regenerative medicine, and as a potential drug delivery vector. However, maintaining integrity and bioactivity of EVs between Good Manufacturing Practice separation/filtration and end-user application remains a consistent bottleneck towards commercialization. Milk-derived extracellular vesicles (mEVs), separated from bovine milk, could provide a relatively low-cost, scalable platform for large-scale mEV production; however, the reliance on cold supply chain for storage remains a logistical and financial burden for biologics that are unstable at room temperature.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
School of Life Sciences, Chongqing University, Chongqing, 401331, China.
The diverse and dynamic population of microorganisms present in the gut microbiota may affect host health. There are evidences to support the role of gut microbiota as a key player in reproductive development. Unfortunately, the relationship between reproductive disorders caused by aging and gut microbiota remains largely unknown.
View Article and Find Full Text PDFBBA Adv
December 2024
University of São Paulo, Department of Cell and Developmental Biology, Institute of Biomedical Sciences (ICB), São Paulo, 05508-000, Brazil.
Metastases are the leading cause of cancer-related deaths, and their origin is not fully elucidated. Recently, studies have shown that extracellular vesicles (EVs), particularly small extracellular vesicles (sEV), can disrupt the homeostasis of organs, promoting the development of a secondary tumor. However, the role of sEV in brain endothelium and their association with metastasis related to breast cancer is unknown.
View Article and Find Full Text PDFJ Neurosci
January 2025
Department of Neurology, Juntendo University School of Medicine, 2-1-1, Hongo, Bunkyo-ku, Tokyo 113-8421, Japan.
Parkinson's disease is characterized by the presence of α-synuclein (α-syn) primarily containing Lewy bodies in neurons. Despite decades of extensive research on α-syn accumulation, its molecular mechanisms have remained largely unexplored. Recent studies by us and others have suggested that extracellular vesicles (EVs), especially exosomes, can mediate the release of α-syn from cells, and inhibiting this pathway could result in increased intracellular α-syn levels.
View Article and Find Full Text PDFJ Extracell Biol
January 2025
Human milk extracellular vesicles (EVs) are crucial mother-to-baby messengers that transfer biological signals. These EVs are reported to survive digestion and transport across the intestine. The mechanisms of interaction between human milk EVs and the intestinal mucosa, including epithelial uptake remain unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!