Phytoplankton has been used as a paradigm for studies of coexistence of species since the publication of the "paradox of the plankton." Although there are a wealth of studies about phytoplankton assemblages of lakes, reservoirs and rivers, our knowledge about phytoplankton biodiversity and its underlying mechanisms in mountain headwater stream ecosystems is limited, especially across regional scales with broad environmental gradients. In this study, we collected 144 phytoplankton samples from the Xijiang headwater streams of the Pearl River across low altitude (< 1,000 m) located in Guangxi province, intermediate altitude (1,000 m < altitude <2,000 m) in Guizhou province and high altitude (> 2,000 m) in Yunnan province of China. Our study revealed high phytoplankton diversity in these streams. Freshwater phytoplankton, including cyanobacteria, Bacillariophyta, Chlorophyta, Rhodophyta, Chrysophyta, Euglenophyta, Glaucophyta, Phaeophyta and Cryptophyta, were all detected. However, phytoplankton alpha diversity exhibited a monotonic decreasing relationship with increasing altitude. High altitudes amplified the "isolated island" effect of headwater streams on phytoplankton assemblages, which were characterized by lower homogeneous selection and higher dispersal limitation. Variability and network vulnerability of phytoplankton assemblages increased with increasing altitudes. Our findings demonstrated diversity, variability and co-occurrence patterns of phytoplankton assemblages linked to environmental factors co-varying with altitude across regional scales.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11367421PMC
http://dx.doi.org/10.3389/fmicb.2024.1417651DOI Listing

Publication Analysis

Top Keywords

headwater streams
8
phytoplankton
5
insight diversity
4
diversity change
4
change variability
4
variability co-occurrence
4
co-occurrence patterns
4
patterns phytoplankton
4
phytoplankton assemblage
4
assemblage headwater
4

Similar Publications

Biodiversity spatial distribution of benthic macroinvertebrate assemblages is influenced by anthropogenic disturbances at multiple spatial extents.

Sci Total Environ

January 2025

Universidade Federal de Minas Gerais, Instituto de Ciências Biológicas, Departamento de Genética, Ecologia e Evolução, Laboratório de Ecologia de Bentos, Av. Antônio Carlos 6627, Pampulha, 31270-901 Belo Horizonte, MG, Brazil.

Understanding the patterns and mechanisms of biodiversity and its organization in space is essential for developing effective conservation strategies. Zeta diversity is an index of how taxa are shared by several sites, providing information on how ecological filters, including anthropogenic disturbances, influence biodiversity distribution. This study documents how anthropogenic disturbances at multiple spatial extents affect the spatial variation of benthic macroinvertebrate assemblages in lotic ecosystems.

View Article and Find Full Text PDF
Article Synopsis
  • Wildfire regimes are altering, raising concerns for aquatic ecosystems and fish species, as predicting fish responses can be complex due to multiple wildfire impacts.
  • Whole-ecosystem approaches like food web modeling can help understand these interactions, showing how different wildfire severities affect aquatic life dynamics in streams.
  • Simulations reveal that wildfires can have varying effects on periphyton, invertebrates, and fish biomass, influenced by fire severity and environmental changes, indicating a need to consider context when assessing wildfire impacts on aquatic ecosystems.
View Article and Find Full Text PDF

Environmental drivers of stream metabolism in a middle TN headwater stream.

PLoS One

December 2024

Department of Earth and Environmental Sciences, Vanderbilt University, Nashville, Tennessee, United States of America.

Monitoring the seasonal and diurnal variations in headwater stream metabolic regimes can provide critical information for understanding how ecosystems will respond to future environmental changes. In East Fork Creek, a headwater stream in middle Tennessee, week-long field campaigns were set up each month from May 2022 to May 2023 to collect stream metabolism estimators. In a more extensive field campaign from July 2-5 in 2022, diel signals were observed for temperature, pH, turbidity, and concentrations of Ca, Mg, K, Se, Fe, Ba, chloride, nitrate, DIC, DO, DOC, and total algae.

View Article and Find Full Text PDF

From data to insights: Upscaling riverine GHG fluxes in Germany with machine learning.

Sci Total Environ

December 2024

Karlsruhe Institute of Technology, Institute for Meteorology and Climate Research, Atmospheric Environmental Research (IMK-IFU), Kreuzeckbahnstrasse 19, Garmisch-Partenkirchen 82467, Germany.

Global fluvial ecosystems are important sources of greenhouse gases (CO, CH and NO) to the atmosphere, but their estimates are plagued by uncertainties due to unaccounted spatio-temporal variabilities in the fluxes. In this study, we tested the potential of modeling these variabilities using several machine learning models (ML) and three different input datasets (remotely sensed vegetation indices, in-situ water quality, and a combination of both) from 20 headwater catchments in Germany that differ in catchment land use and stream size. We also upscaled fluvial GHG fluxes for Germany using the best ML model and explored the role of catchment land use on the GHG spatial-temporal trends.

View Article and Find Full Text PDF

Microbial community and functional shifts across agricultural and urban landscapes within a Lake Erie watershed.

J Environ Manage

December 2024

Great Lakes Institute of Environmental Research, University of Windsor, Windsor, Ontario, N9B 3P4, Canada. Electronic address:

The role of sediment microbial communities in regulating the loss and retention of nutrients in aquatic ecosystems has been increasingly recognised. However, in the Great Lakes, where nutrient mitigation focuses on harmful algal blooms, there are limited studies examining the fundamental role of water/sediment microbes in nutrient biogeochemical cycling. Little is understood in this regard considering the increase in anthropogenic pressure on in-stream biological processes impacting nutrient flux to lakes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!