A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Electrical nature of randomly oriented low-dimensional structural hybrids of carbon. | LitMetric

Electrical nature of randomly oriented low-dimensional structural hybrids of carbon.

Phys Chem Chem Phys

Laboratory for Electro-Optics Systems (LEOS), Indian Space Research Organization (ISRO), Bengaluru, 560 058, India.

Published: September 2024

Low-dimensional carbon materials are of great interest and have tremendous potential for application in flexible plastic electronics. However, the development of devices based on carbon structural hybrids is often hindered due to the high recombination rate of photoexcited charges, low absorbance, and other factors. This work discusses the emergence of multi-component structural forms of carbon from single-wall carbon nanotubes (SWCNTs) and demonstrates the electrical nature of the film containing these heterogeneous low-dimensional structural derivatives that are amalgamated in a polyurethane matrix. SWCNTs serve as a building block to give rise to multi-structural compounds, including multi-wall carbon nanotubes (MWCNTs), graphene sheets (GSs), carbon nanoscrolls (CNS), 'Y' and 'T' junctions, twisted CNTs and carbon nano-onion (CNO)-like structures, after performing oxidative purification and covalent functionalization processes. These one- and two-dimensional (1D and 2D) components with different individual electrical characteristics when integrated in a polyurethane binder and spin-coated on a SiO/Si substrate exhibit an overall semiconducting behaviour. Current ()-voltage () characteristics reveal thermally driven photo-excited charges that are mainly responsible for the observed current trend of the film. Herein, we explore a facile cost-effective strategy to fabricate stable thin film coatings comprising a random network of functionalized structural derivatives of carbon and polymer conjugates and investigate the overall electrical nature to envisage incorporating these nanomaterials in future plastic electronics.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d4cp00702fDOI Listing

Publication Analysis

Top Keywords

electrical nature
12
carbon
9
low-dimensional structural
8
structural hybrids
8
plastic electronics
8
carbon nanotubes
8
structural derivatives
8
structural
5
electrical
4
nature randomly
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!