The study of antibodies in jawed vertebrates (gnathostomes) provides every immunologist with a bird's eye view of how human immunoglobulins (Igs) came into existence and subsequently evolved into their present forms. It is a fascinating Darwinian history of conservation on the one hand and flexibility on the other, exemplified by the Ig heavy chain (H) isotypes IgM and IgD/W, respectively. The cartilaginous fish (e.g., sharks) Igs provide a glimpse of "how everything got off the ground," while the amphibians (e.g., the model Xenopus) reveal how the adaptive immune system made an about face with the emergence of Ig isotype switching and IgG-like structure/function. The evolution of mucosal Igs is a captivating account of malleability, convergence, and conservation, and a call to arms for future study! In between there are spellbinding chronicles of antibody evolution in each class of vertebrates and rather incredible stories of how antibodies can adapt to occupy niches, for example, single-domain variable regions, cold-adapted Igs, convergent mechanisms to dampen antibody function, provision of mucosal defense, and many more. The purpose here is not to provide an encyclopedic examination of antibody evolution, but rather to hit the high points and entice readers to appreciate how things "came to be."

Download full-text PDF

Source
http://dx.doi.org/10.1111/imr.13389DOI Listing

Publication Analysis

Top Keywords

antibody evolution
8
janus dual
4
dual model
4
model immunoglobulin
4
immunoglobulin isotype
4
evolution
4
isotype evolution
4
evolution conservation
4
conservation plasticity
4
plasticity defining
4

Similar Publications

The continued evolution of SARS-CoV-2 variants capable of subverting vaccine and infection-induced immunity suggests the advantage of a broadly protective vaccine against betacoronaviruses (β-CoVs). Recent studies have isolated monoclonal antibodies (mAbs) from SARS-CoV-2 recovered-vaccinated donors capable of neutralizing many variants of SARS-CoV-2 and other β-CoVs. Many of these mAbs target the conserved S2 stem region of the SARS-CoV-2 spike protein, rather than the receptor binding domain contained within S1 primarily targeted by current SARS-CoV-2 vaccines.

View Article and Find Full Text PDF

The applications of artificial intelligence (AI) and deep learning (DL) are leading to significant advances in cancer research, particularly in analysing histopathology images for prognostic and treatment-predictive insights. However, effective translation of these computational methods requires computational researchers to have at least a basic understanding of histopathology. In this work, we aim to bridge that gap by introducing essential histopathology concepts to support AI developers in their research.

View Article and Find Full Text PDF

Active targeting of type 1 diabetes therapies to pancreatic beta cells using nanocarriers.

Diabetologia

January 2025

Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, CO, USA.

Type 1 diabetes is an autoimmune disease characterised by the destruction of pancreatic beta cells, resulting in lifelong insulin dependence. Although exogenous insulin can maintain glycaemic control, this approach does not protect residual or replacement pancreatic beta cells from immune-mediated death. Current therapeutics designed to protect functional beta cell mass or promote beta cell proliferation and regeneration can have off-target effects, resulting in higher dose requirements and adverse side effects.

View Article and Find Full Text PDF

Unlabelled: The SARS-CoV-2 JN.1 lineage emerged in late 2023 and quickly replaced the XBB lineages, becoming the predominant Omicron variant worldwide in 2024. We estimate the epidemiologic impact of this SARS-CoV-2 lineage replacement in Brazil and we further assessed the cross-reactive neutralizing antibody (NAb) responses in a cohort of convalescent Brazilian patients infected during 2023.

View Article and Find Full Text PDF

Antibodies and Inflammation: Fecal Biomarkers of Gut Health in Domestic Ruminants.

J Exp Zool A Ecol Integr Physiol

January 2025

Department of Earth and Environmental Science, School of Natural Sciences, Faculty of Science and Engineering, The University of Manchester, Manchester, UK.

Gastrointestinal infections present major challenges to ruminant livestock systems, and gut health is a key constraint on fitness, welfare, and productivity. Fecal biomarkers present opportunities to monitor animal health without using invasive methods, and with greater resolution compared to observational metrics. Here we developed enzyme-linked immunosorbent assays for three potential fecal biomarkers of gut health in domestic ruminants: two immunological (total immunoglobulin [Ig]A and total IgG) and one inflammatory (lactoferrin).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!