The role of TRPA1 and TRPV1 in the perception of astringency.

Chem Senses

Department of Food Science & Technology, The Ohio State University, 2015 Fyffe Rd, Columbus, OH 43210, United States.

Published: January 2024

Astringency, commonly described as a drying, roughening, and/or puckering sensation associated with polyphenol-rich foods affects their palatability. While the compounds eliciting astringency are known, its mechanism of action is debated. This study investigated the role of transient receptor potential (TRP) channels A1 and V1 in astringency perception. If TRP A1 or V1 have a functional role in astringency perception, then desensitizing these receptors should decrease perceived astringency. Thirty-seven panelists underwent unilateral lingual desensitization of TRP A1 and V1 channels using mustard oil and capsaicin, respectively. Panelists then evaluated four astringent stimuli: epicatechin (EC), epigallocatechin gallate (EGCG), tannic acid (TA), and potassium alum (Alum), via 2-AFC and intensity ratings. When TRPA1 receptors were desensitized on one half of the tongue via mustard oil, no significant differences were observed between the treated and untreated sides for both 2-AFC and intensity ratings. Similarly, when TRPV1 receptors were desensitized on one half of the tongue via capsaicin, no significant differences were observed between the treated and untreated sides for both 2-AFC and intensity ratings. These findings challenge the notion that TRP channels play a pivotal role in astringency perception.

Download full-text PDF

Source
http://dx.doi.org/10.1093/chemse/bjae031DOI Listing

Publication Analysis

Top Keywords

trp channels
12
astringency perception
12
2-afc intensity
12
intensity ratings
12
role astringency
8
mustard oil
8
receptors desensitized
8
desensitized half
8
half tongue
8
differences observed
8

Similar Publications

Background And Purpose: Polycystins (PKD2, PKD2L1) are voltage-gated and Ca -modulated members of the transient receptor potential (TRP) family of ion channels. Loss of PKD2L1 expression results in seizure-susceptibility and autism-like features in mice, whereas variants in PKD2 cause autosomal dominant polycystic kidney disease. Despite decades of evidence clearly linking their dysfunction to human disease and demonstrating their physiological importance in the brain and kidneys, the polycystin pharmacophore remains undefined.

View Article and Find Full Text PDF

NLRP3 deficiency aggravated DNFB-induced chronic itch by enhancing type 2 immunity IL-4/TSLP-TRPA1 axis in mice.

Front Immunol

January 2025

Department of Pain Management, The State Key Specialty in Pain Medicine, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.

Background: The nod-like receptor family pyrin domain-containing 3 (NLRP3) has been implicated in various skin diseases. However, its role in mediating 2, 4-dinitrofluorobenzene (DNFB)-induced chronic itch remains unclear.

Methods: Widetype () and deletion ( )mice, the expression of transient receptor potential (TRP) ankyrin 1 (TRPA1) inhibitor or recombinant mice interleukin-18 (IL-18) were used to establish and evaluate the severity of DNFB-mediated chronic itch.

View Article and Find Full Text PDF

Pulmonary hypertension associated with lung diseases and/or hypoxia is classified as group 3 in the clinical classification of pulmonary hypertension. The efficacy of existing selective pulmonary vasodilators for group 3 pulmonary hypertension is still unknown, and it is currently associated with a poor prognosis. The mechanisms by which pulmonary hypertension occurs include hypoxic pulmonary vasoconstriction, pulmonary vascular remodeling, a decrease in pulmonary vascular beds, endothelial dysfunction, endothelial-to-mesenchymal transition, mitochondrial dysfunction, oxidative stress, hypoxia-inducible factors (HIFs), inflammation, microRNA, and genetic predisposition.

View Article and Find Full Text PDF

Neuron Modulation by Synergetic Management of Redox Status and Oxidative Stress.

Small

January 2025

Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Academy for Engineering and Technology, Fudan University, Shanghai, 200433, P. R. China.

The transient receptor potential (TRP) channel is a key sensor for diverse cellular stimuli, regulating the excitability of primary nociceptive neurons. Sensitization of the TRP channel can heighten pain sensitivity to innocuous or mildly noxious stimuli. Here, reversible modulation of TRP channels is achieved by controlling both the light-induced photoelectrochemical reaction to induce neuronal depolarization, and antioxidants for neuronal protection.

View Article and Find Full Text PDF

The antioxidant property of CAPE depends on TRPV1 channel activation in microvascular endothelial cells.

Redox Biol

January 2025

Laboratory for Research in Functional Nutrition, Instituto de Nutrición y Tecnología de los Alimentos, Universidad de Chile, Av. El Líbano 5524, Macul, Santiago, 7830490, Chile. Electronic address:

Caffeic acid phenethyl ester (CAPE) is a hydrophobic phytochemical typically found in propolis that acts as an antioxidant, anti-inflammatory and cardiovascular protector, among several other properties. However, the molecular entity responsible for recognising CAPE is unknown, and whether that molecular interaction is involved in developing an antioxidant response in the target cells remains an unanswered question. Herein, we hypothesized that a subfamily of TRP ion channels works as the molecular entity that recognizes CAPE at the plasma membrane and allows a fast shift in the antioxidant capacity of intact endothelial cells (EC).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!