Anaerobic treatment of industrial wastewater using upflow anaerobic reactors is an extended trend due to its high efficiency and biogas production potential, but its implementation in some sectors is limited due to the complexity and toxicity of the wastewaters. In this study, a two-stage expanded granular sludge bed (EGSB) reactors system has been investigated at both bench and pilot scale for the treatment of complex and toxic real wastewater from a petrochemical industry. The effect of different operational parameters including organic loading rate (OLR), hydraulic retention time (HRT) and influent characteristics over COD removal and biogas production and composition have been studied. Additionally, biomass specific methanogenic activity (SMA) and wastewater toxicity have been evaluated after long-term operation. Optimum total HRT of 24 h has been determined resulting in total COD and SO removal of 56.30 ± 5.25% and 31.68 ± 14.71%, respectively, at pilot scale, and average biogas production of 93.47 ± 34.92 NL/day with 67.01 ± 10.23 %CH content and 5210.11 ± 6802.27 ppmv of HS. SMA and toxicity tests have confirmed inhibitory and toxic effects of wastewater over anaerobic biomass with average maximum inhibition of 65.34% in the unacclimated anaerobic inoculum while chronic toxicity produced a decrease of an order of magnitude in SMA after 600 days of operation. This study demonstrates the feasibility of applying an anaerobic treatment to this wastewater using EGSB reactors between a 0.97-1.74 gCOD/L/day OLR range. Nonetheless, periodic reinoculation would be necessary for long-term operation due to chronic toxicity of the wastewater exerted on the anaerobic biomass. PRACTITIONER POINTS: A two-stage EGSB reactors system has been operated at bench and pilot scale to treat complex and toxic petrochemical wastewater. Optimal total HRT of 24 h resulted in average COD removal ranging from 40% to 60%. SMA and toxicity tests have been performed to study long-term acclimation, detecting an activity depletion of an order of magnitude.

Download full-text PDF

Source
http://dx.doi.org/10.1002/wer.11109DOI Listing

Publication Analysis

Top Keywords

egsb reactors
16
reactors system
12
complex toxic
12
biogas production
12
pilot scale
12
cod removal
12
study two-stage
8
wastewater
8
industrial wastewater
8
wastewater anaerobic
8

Similar Publications

Anaerobic ammonium oxidation (anammox) poses an emerging research field as it can outstand previous processes of biological wastewater treatment in terms of efficiency and costs. Anammox bacteria have the ability to metabolise NH and NO to produce N under anaerobic conditions. Despite numerous studies, there is a lack of research on the co-occurrence and interrelationship of the predominant microbes that inhabit anammox-related processes.

View Article and Find Full Text PDF

Long-term and multiscale assessment of methanogenesis enhancement mechanisms in magnetite nanoparticle-mediated anaerobic digestion reactor.

Environ Res

December 2024

State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, PR China.

Magnetite nanoparticles (FeO-NPs) have been demonstrated to be involved in direct interspecies electron transfer between syntrophic bacteria, yet a comprehensive assessment of the ability of FeO-NPs to cope with process instability and volatile fatty acids (VFAs) accumulation in scaled-up anaerobic reactors is still lacking. Here, we investigated the start-up characteristics of an expanded granular sludge bed (EGSB) with FeO-NPs as an adjuvant at high organic loading rate (OLR). The results showed that the methane production rate of R1 (with FeO-NPs) was approximately 1.

View Article and Find Full Text PDF

Anaerobic treatment of industrial wastewater using upflow anaerobic reactors is an extended trend due to its high efficiency and biogas production potential, but its implementation in some sectors is limited due to the complexity and toxicity of the wastewaters. In this study, a two-stage expanded granular sludge bed (EGSB) reactors system has been investigated at both bench and pilot scale for the treatment of complex and toxic real wastewater from a petrochemical industry. The effect of different operational parameters including organic loading rate (OLR), hydraulic retention time (HRT) and influent characteristics over COD removal and biogas production and composition have been studied.

View Article and Find Full Text PDF

Start-up strategy of single-stage partial nitrification-anammox process for anaerobic digestion effluent.

Bioresour Technol

September 2024

Department of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Eonyang-eup, Ulju-gun, Ulsan 44919, Republic of Korea; Graduate School of Carbon Neutrality, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Eonyang-eup, Ulju-gun, Ulsan 44919, Republic of Korea. Electronic address:

The objective of this study was to improve the nitrogen removal efficiency and reduce the start-up period of a single-stage partial nitritation-anammox (SPNA) system using iron particle-integrated anammox granules (IP-IAGs). Anammox granules were enriched in sequencing batch and expanded granular sludge bed (EGSB) reactors. The EGSB reactor produced larger and more uniform granules with higher specific anammox activity.

View Article and Find Full Text PDF

Impact of benzalkonium chloride on anaerobic granules and its long-term effects on reactor performance.

J Hazard Mater

September 2024

Technical University of Darmstadt, Institute IWAR, Chair of Wastewater Technology, Franziska-Braun-Straße 7, D-64287 Darmstadt, Germany.

This study assessed the inhibitory and performance-degrading effects induced by the cationic surfactant benzalkonium chloride (BAC) on anaerobic granules during the long-term operation of a laboratory-scale expanded granular sludge bed (EGSB) reactor. To address the critical scientific problem of how BAC affects the efficiency of EGSB reactors, this research uniquely evaluated the long-term stress response to BAC by systematically comparing continuous and discontinuous inhibitor exposure scenarios. The novel comparison demonstrated that inhibitor concentration is of minor relevance compared to the biomass-specific cumulative inhibitor load in the reactor.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!