BamA, an Omp85 superfamily member, is universally conserved and essential for cell viability. Using anti-Oma87 antibodies, we focus on understanding the effect of Oma87 of Acinetobacter baumannii on pathogenicity. Oma87 was expressed, purified, and used to induce anti-Oma87 antibodies in BALB/c mice. Acute toxicity of the protein was evaluated in mice. HeLa cells were infected with both live and killed A. baumannii 19606 and a clinical isolate. The effects of anti-Oma87 sera on A. baumannii adherence, internalization, and proliferation in HeLa cells were studied. The roles of microfilaments and microtubules in A. baumannii invasion were demonstrated by Actin disruption. Reduced bacterial population and biofilm formation were noted. The ability of A. baumannii to provoke autophagy through Oma87 induction leads to incomplete autophagy and potentially facilitates bacterial replication. Actin-mediated uptake, attachment, and invasion demonstrated A. baumannii survival and multiplication within vacuoles in the host cell. The findings underscore the potential of Oma87 as a therapeutic intervention target in infections caused by A. baumannii. This comprehensive analysis contributes valuable information for understanding the virulence mechanisms of A. baumannii, potentially guiding future strategies to combat infections caused by this pathogen.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/apm.13465 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!