Background: Due to the complex pathophysiological mechanisms involved in cancer progression and metastasis, current therapeutic approaches lack efficacy and have significant adverse effects. Therefore, it is essential to establish novel strategies for combating cancer. Phytochemicals, which possess multiple biological activities, such as antioxidant, anti-inflammatory, antimutagenic, immunomodulatory, antiproliferative, anti-angiogenesis, and antimetastatic properties, can regulate cancer progression and interfere in various stages of cancer development by suppressing various signaling pathways.
Methods: The current systematic and comprehensive review was conducted based on Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) criteria, using electronic databases, including PubMed, Scopus, and Science Direct, until the end of December 2023. After excluding unrelated articles, 111 related articles were included in this systematic review.
Results: In this current review, the major signaling pathways of cancer metabolism are highlighted with the promising anticancer role of phytochemicals. This was through their ability to regulate the AMP-activated protein kinase (AMPK)/peroxisome proliferator-activated receptor-gamma coactivator-1α (PGC-1α) signaling pathway. The AMPK/PGC-1α signaling pathway plays a crucial role in cancer cell metabolism via targeting energy homeostasis and mitochondria biogenesis, glucose oxidation, and fatty acid oxidation, thereby generating ATP for cell growth. As a result, targeting this signaling pathway may represent a novel approach to cancer treatment. Accordingly, alkaloids, phenolic compounds, terpene/terpenoids, and miscellaneous phytochemicals have been introduced as promising anticancer agents by regulating the AMPK/PGC-1α signaling pathway. Novel delivery systems of phytochemicals targeting the AMPK/PGC-1α pathway in combating cancer are also highlighted in this review.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11368033 | PMC |
http://dx.doi.org/10.1186/s12885-024-12715-7 | DOI Listing |
Drugs Aging
January 2025
Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.
IgG4-related disease (IgG4-RD) is an immune-mediated disorder characterized by organ enlargement and dysfunction. The formation of tertiary lymphoid tissues (TLTs) in affected organs is crucial for understanding IgG4-RD, as T follicular helper (Tfh) 2 cells within TLTs drive IgG4+B cell differentiation, contributing to mass formation. Key cytokines IL-4 and IL-10, produced by Tfh2 cells, are essential for this process.
View Article and Find Full Text PDFNaunyn Schmiedebergs Arch Pharmacol
January 2025
The Key Laboratory of Spine and Spinal Cord Disease of Jiangxi Province, Nanchang, 330006, China.
Chrysoeriol (CHE) is a naturally occurring compound with established anti-inflammatory and anti-tumor effects. This study examines its potential role in regulating osteoclast differentiation and activity, both of which are crucial for bone remodeling. Computational docking revealed high binding affinity between CHE and RANKL, specifically at the Lys-181 residue of RANKL, suggesting potential inhibitory interactions on osteoclastogenesis.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Critical Care Medicine, Tongde Hospital of Zhejiang Province, #234 Gucui Road, Hangzhou, 310012, Zhejiang, People's Republic of China.
The intestinal barrier function is a critical defense mechanism in the human body, serving as both the primary target and initiating organ in cases of sepsis. Preserving the integrity of this barrier is essential for preventing complications and diseases, including sepsis and mortality. Despite this importance, the impact of resveratrol on intestinal barrier function remains unclear.
View Article and Find Full Text PDFSci Rep
January 2025
School of Medicine, Nankai University, Tianjin, 300071, China.
Cholangiocarcinoma (CCA), a highly aggressive form of cancer, is known for its high mortality rate. A Disintegrin and Metalloprotease Domain-like Protein Decysin-1 (ADAMDEC1) can promote the development and metastasis in various tumors by degrading the extracellular matrix. However, its regulatory mechanism in CCA remains unclear.
View Article and Find Full Text PDFAnn Hematol
January 2025
Department of Hematology, Navy Medical Center of PLA, Naval Medical University, No. 338 West Huaihai Road, Changning District, Shanghai, 200052, China.
Multiple myeloma(MM) remains incurable with high relapse and chemoresistance rates. Differentially expressed genes(DEGs) between newly diagnosed myeloma and secondary plasma cell leukemia(sPCL) were subjected to a weighted gene co-expression network analysis(WGCNA). Drug resistant myeloma cell lines were established.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!