Modeling and simulation for the sustainable recovery of aromatics (BTX) from petrochemical industrial wastewater.

Environ Sci Pollut Res Int

Department of Chemical Engineering, BITS Pilani, Dubai Campus, Dubai International Academic City, Dubai, United Arab Emirates.

Published: September 2024

AI Article Synopsis

  • Petrochemical wastewater contains harmful organic and inorganic pollutants, posing risks to soil, water, and human health.
  • This study aims to recover valuable aromatics (like benzene and toluene) and water from this wastewater while removing toxic heavy metals through a specific treatment process using sodium bicarbonate.
  • The effectiveness of the process was confirmed through Aspen Hysys simulation and lab experiments, achieving over 99.5% removal of heavy metals, highlighting the potential for recycling and sustainability in petrochemical industries.

Article Abstract

Petrochemical wastewater is a major industrial source of pollution that produces a variety of toxic organic and inorganic pollutants, naturally present or added during the process. These pollutants are a serious threat to the soil, water, environment, and human being due to their complex and hazardous nature. Glycols such as monoethylene glycol (MEG), diethylene glycol (DEG), triethylene glycol (TEG), and aromatics (BTX-benzene, toluene, and xylene) are the most common organic impurities present in petrochemical wastewater. The objective of this paper is to recover aromatics and water from petrochemical industrial wastewater. The reclamation process is used to remove inorganic impurities such as heavy metals Fe, Zn, Pb, Mn, Al, Ni, As, Cr, Cu, Cd, and K and salts. In the present work, 1% sodium bi-carbonate (NaHCO) is used to precipitate the inorganic impurities present in the wastewater at 40 °C atmospherically. Aspen Hysys simulation software is used for modeling and simulation for the treatment process using NRTL (non-random-two-liquid) thermodynamic model. The process generated from Aspen Hysys is validated with lab experiments. To support global sustainable development, this study is focused on reducing, reusing, and recycling separation techniques such as centrifuge separation and vacuum distillation have been used. The characterization of regenerated water was performed using ICP-OES (inductively coupled plasma-optical emission spectroscopy) to determine the reduction in heavy metals. It was found that > 99.5% of heavy metals were removed. The regeneration of these aromatics is necessary for economic and environmental reasons so that it can be reused to avoid its disposal in and contamination of natural environments.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-024-34810-9DOI Listing

Publication Analysis

Top Keywords

heavy metals
12
modeling simulation
8
petrochemical industrial
8
industrial wastewater
8
petrochemical wastewater
8
inorganic impurities
8
aspen hysys
8
wastewater
5
simulation sustainable
4
sustainable recovery
4

Similar Publications

Growth and metabolic functions of Schizolobium amazonicum subjected to nickel doses.

Braz J Biol

January 2025

Universidade Federal Rural da Amazônia - UFRA, Belém, PA, Brasil.

Anthropic activities such as industries, agriculture and mining has generated public concern for its numerous irregular disposals of its waste, the incorrect deposition of heavy metals such as nickel (Ni) has caused the degradation and contamination of groundwater and water. Studies that point out cheap and efficient solutions have been an obstacle to the advancement of solutions for degraded area recovery programs. For this, a vegetable home experiment was developed, with an entirely randomized design with 5 treatments being a control (no metal) and 4 nickel concentrations (200 μM/L; 400 μM/L; 600 μM/L and 800 μM/L) with 6 repetitions.

View Article and Find Full Text PDF

Megalithism has been repetitively tied to specialised herding economies in Iberia, particularly in the mountainous areas of the Basque Country. Legaire Sur, in the uplands of Álava region, is a recently excavated passage tomb (megalithic monument) that held a minimum number of 25 individuals. This study analysed the carbon, nitrogen, oxygen, and strontium isotope ratios of 18 individuals, in a multi-tissue sampling study (successional tooth enamel sampling, incremental dentine sampling, and bulk bone collagen sampling).

View Article and Find Full Text PDF

In this study, an efficient membrane composed of polysulfone and graphene oxide was developed and evaluated for its efficacy in chromium adsorption. Characterization of the synthesized membrane involved comprehensive analyses including scanning electron microscopy (SEM), transmission electron microscopy (TEM), thermogravimetric analysis (TGA) and Fourier-transform infrared spectroscopy (FTIR) to assess its structural properties. Subsequently, the membrane's performance in removing chromium from aqueous solutions was scrutinized, considering key operational parameters.

View Article and Find Full Text PDF

Nutritional immunity, a key component of the vertebrate innate immune response, involves the modulation of zinc availability to limit the growth of pathogens. counteracts host-imposed zinc starvation through metabolic adaptations, including reprogramming of gene expression and activating efficient metal uptake systems. To unravel how zinc shortage contributes to the complexity of bacterial adaptation to the host environment, it is critical to use model systems that mimic fundamental features of -related diseases in humans.

View Article and Find Full Text PDF

A cross-sectional study on improving clinical efficiency through centralized digital impression.

Hua Xi Kou Qiang Yi Xue Za Zhi

February 2025

Center of Stomatology, Peking University Shenzhen Hospital, Shenzhen 518036, China.

Objectives: This study aims to explore the effect of improving clinical efficiency by replacing traditional impression workflow with centralized digital impression workflow.

Methods: The department of prosthodontics in Center of Stomatology, Peking University Shenzhen Hospital has improved the clinical workflow by replacing the traditional impression made by doctors using impression materials for each patient with a centralized digital impression made by one technician for all patients in the department. This cross-sectional study recorded the chairside time required for impression taking in patients undergoing single posterior zirconia full crown restoration before clinical process improvement; the time required for centralized digital impression production; the comfort level of patients; and the adjacency relationship, occlusal contact relationship, and time required for prostheses adjusting (i.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!