The study characterized the temporal and spatial variability in greenhouse gas (GHG) fluxes (CO, CH, and NO) between December 2020 and November 2021 and their regulating drivers in the subtropical wetland of the Indian Himalayan foothill. Five distinct habitats (M1-sloppy surface at swamp forest, M2-plain surface at swamp forest, M3-swamp surface with small grasses, M4-marshy land with dense macrophytes, and M5-marshy land with sparse macrophytes) were studied. We conducted in situ measurements of GHG fluxes, microclimate (AT, ST, and SMC), and soil properties (pH, EC, N, P, K, and SOC) in triplicates in all the habitat types. Across the habitats, CO, CH, and NO fluxes ranged from 125 to 536 mg m h, 0.32 to 28.4 mg m h, and 0.16 to 3.14 mg m h, respectively. The habitats (M3 and M5) exhibited higher GHG fluxes than the others. The CH flux followed the summer > autumn > spring > winter hierarchy. However, CO and NO fluxes followed the summer > spring > autumn > winter. CO fluxes were primarily governed by ST and SOC. However, CH and NO fluxes were mainly regulated by ST and SMC across the habitats. In the case of NO fluxes, soil P and EC also played a crucial role across the habitats. AT was a universal driver controlling all GHG fluxes across the habitats. The results emphasize that long-term GHG flux monitoring in sub-tropical Himalayan Wetlands has become imperative to accurately predict the near-future GHG fluxes and their changing nature with the ongoing climate change.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10661-024-13062-7 | DOI Listing |
Sci Total Environ
January 2025
Department of Forest Sciences, Faculty of Agricultural and Environmental Sciences, Universidad de La Frontera, Temuco, Chile.
Peatlands are key ecosystems for global climate regulation because they provide the most efficient carbon sink on the planet. Despite this, they have been widely degraded by various anthropogenic disturbances, causing imbalances in their ecological functioning. A more recent type of disturbance corresponds to the commercial extraction of Sphagnum mosses, which has been carried out in temperate peatlands distributed in Australasia and Patagonia.
View Article and Find Full Text PDFEnviron Res
January 2025
Department of Environmental and Resource Engineering, Technical University of Denmark, Lyngby DK-2800, Denmark.
Wetlands are important carbon sinks for mitigating climate warming. In this paper, greenhouse gas (GHG) fluxes and carbon sequestration capacity of freshwater wetlands, coastal wetlands and constructed wetlands around the world are evaluated, and strategies to improve carbon sequestration by wetlands are proposed based on the main influencing factors. Air temperature and average annual rainfall are significantly positively correlated with CH flux and NO flux in freshwater wetlands and coastal wetlands.
View Article and Find Full Text PDFEnviron Evid
January 2025
Department of Soil and Environment, Swedish University of Agricultural Sciences, Box 7014, 750 07, Uppsala, Sweden.
Background: To align with climate goals, greenhouse gas (GHG) emissions from agriculture must be reduced significantly. Cultivated peatlands are an important source of such emissions. One proposed measure is to convert arable fields on peatlands to grassland, as the Intergovernmental Panel on Climate Change (IPCC) default emission factors (EF) for organic soils are lower from grasslands.
View Article and Find Full Text PDFHorizontal subsurface flow constructed wetlands (HFCWs) are capable of eliminating organic matter and nitrogen while emitting less methane (CH) and nitrous oxide (NO) than free water surface flow wetlands. However, the simultaneous removal of pollutants and reduction of greenhouse gases (GHG) emissions from high-strength wastewater containing high levels of organic matter and ammonium nitrogen (NH-N) has not get been investigated. The influent COD concentration affected the efficiency of nitrogen removal, GHG emissions and the presence of iron from iron ore, but the COD and TP removal efficiencies remained unaffected.
View Article and Find Full Text PDFJ Environ Manage
January 2025
Department of Ecology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Nijmegen, the Netherlands.
Recent studies indicate that greenhouse gas (GHG) emissions from agricultural drainage ditches can be significant on a per-unit area basis, but spatiotemporal investigations are still limited. Additionally, the impact of dredging - a common management in such environments - on ditch GHG emissions is largely unknown. This study presents year-round GHG emissions from nine ditches on a dairy farm in the center of the Netherlands, where each year, approximately half of the ditches are dredged in alternating cycles.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!