Oxidation of isonicotinic acid hydrazide (isoniazid) by horseradish peroxidase at the expense of H2O2 yielded reactive species which were able to reduce nitroblue tetrazolium and bleach p-nitrosodimethylaniline. Nicotinic acid hydrazide oxidation did not cause these effects. At slightly alkaline pH, oxidation of isonicotinic acid hydrazide by horseradish peroxidase proceeded at the expense of molecular O2, and the reaction was oxygen consuming. The addition of H2O2 abolished O2 consumption. Bovine liver catalase enhanced the rate of nitroblue tetrazolium reduction and decreased the maximal velocity of the reaction proportionately to catalase concentration. During oxidation of isonicotinic acid hydrazide by horseradish peroxidase-H2O2, splitting of the heme group of horseradish peroxidase took place as shown by the disappearance of the Soret and minor bands in the visible region of the spectrum.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC176284PMC
http://dx.doi.org/10.1128/AAC.27.3.399DOI Listing

Publication Analysis

Top Keywords

acid hydrazide
16
oxidation isonicotinic
12
isonicotinic acid
12
horseradish peroxidase
12
nitroblue tetrazolium
8
hydrazide horseradish
8
peroxidase-mediated oxidation
4
oxidation isoniazid
4
oxidation
4
isoniazid oxidation
4

Similar Publications

The Petasis Reaction: Applications and Organic Synthesis-A Comprehensive Review.

Top Curr Chem (Cham)

January 2025

Department of Chemistry, Yashavantrao Chavan Institute of Science, Lead College, Karmaveer Bhaurao Patil University, Satara, Maharashtra, 415001, India.

The Petasis reaction has introduced significant advancements through the use of various catalysts, solvents, methodologies, and substrates in diverse areas of chemistry, including medicinal, organic, combinatorial, biochemical, and heterocyclic chemistry. It is a prominent method for synthesizing compounds such as α-amino acids, β-amino alcohols, Aza-beta-lactams, alkylaminophenols, α-arylglycines, 2H-chromenes, aminophenols, and hydrazide alcohols. With the increasing demand for medicines, drugs, industrial products, insecticides, and pesticides, the Petasis reaction has become an indispensable and versatile tool.

View Article and Find Full Text PDF

Palladium(II) complexes containing andrographolide appended N,O heterocyclic chelators: Investigation of anti-oxidant, anti-cancer and apoptotic activities.

J Inorg Biochem

January 2025

Department of Chemistry, Karpagam Academy of Higher Education, Coimbatore 641 021, India; Centre for Material Chemistry, Karpagam Academy of Higher Education (Deemed to be University), Coimbatore 641 021, India. Electronic address:

A series of new Pd(II) complexes were synthesized from the reaction of andrographolide appended hydrazide derivatives with potassium tetrachloropalladate K[PdCl]. The formation of the complexes was confirmed through structural assessments conducted using various spectroscopic techniques. From the spectral studies we confirmed that the ligands coordinated to Pd(II) ion via amine nitrogen and enone oxygen.

View Article and Find Full Text PDF

A highly sensitive and fast-response fluorescence nanoprobe for in vivo imaging of hypochlorous acid.

J Hazard Mater

January 2025

State Key laboratory of Chemical Safety, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, PR China. Electronic address:

Fluorescent probes for in vivo hypochlorous acid (HClO) imaging often face challenges of low selectivity and high cytotoxicity, largely due to poor analyte recognition and water-insoluble aromatic skeletons. To address this, we synthesized fluorescein hydrazide by introducing a spiro-lactam unit into fluorescein, which offers high emission intensity and molar absorption. The five-membered heterocycle in fluorescein hydrazide is selectively disrupted by HClO, enhancing the conjugated system and electron delocalization of the fluorophore, resulting in highly sensitive fluorescence detection of HClO.

View Article and Find Full Text PDF

X-ray Responsive Antioxidant Drug-Free Hydrogel for Treatment of Radiation Skin Injury.

ACS Appl Mater Interfaces

January 2025

State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Tianjin Institutes of Health Science, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, P. R. China.

Radiotherapy (RT) is widely applied in tumor therapy, but inevitable side effects, especially for skin radiation injury, are still a fatal problem and life-threatening challenge for tumor patients. The main components of topical radiation protection preparations currently available on the market are antioxidants, such as SOD, which are limited by their unstable activity and short duration of action, making it difficult to achieve the effects of radiation protection and skin radiation damage treatment. Therefore, we designed a drug-free antioxidant hydrogel patch with encapsulated bioactive epidermal growth factor (EGF) for the treatment of radiation skin injury.

View Article and Find Full Text PDF

Tuberculosis (TB) remains a major global threat, with 10 million new cases and 1.5 million deaths each year. In multidrug-resistant tuberculosis (MDR-TB), resistance is most commonly observed against isoniazid (INH) and rifampicin (RIF), the two frontline drugs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!