Mechanistic Insights and Knowledge Gaps in the Effects of Radiation Therapy on Cardiac Arrhythmias.

Int J Radiat Oncol Biol Phys

Cardiology Department, Westmead Hospital, University of Sydney, Westmead, New South Wales, Australia; Westmead Applied Research Centre, Faculty of Medicine and Health, University of Sydney, Westmead, New South Wales, Australia; Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia. Electronic address:

Published: January 2025

Stereotactic body radiation therapy (SBRT) is an innovative modality for the treatment of refractory ventricular arrhythmias (VAs). Phase 1/2 clinical trials have demonstrated the remarkable efficacy of SBRT at reducing VA burden (by >85%) in patients with good short-term safety. SBRT as an option for VA treatment delivered in an ambulatory nonsedated patient in a single fraction during an outpatient session of 15 to 30 minutes, without added risks of anesthetic or surgery, is clinically relevant. However, the underlying mechanism remains unclear. Currently, the clinical dosing of SBRT has been derived from preclinical studies aimed at inducing transmural fibrosis in the atria. The propitious clinical effects of SBRT appear earlier than the time course for fibrosis. This review addresses the plausible mechanisms by which radiation alters the electrophysiological properties of myocytes and myocardial conduction to impart an antiarrhythmic effect, elucidate clinical observations, and point the direction for further research in this promising area.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijrobp.2024.08.040DOI Listing

Publication Analysis

Top Keywords

radiation therapy
8
sbrt
5
mechanistic insights
4
insights knowledge
4
knowledge gaps
4
gaps effects
4
effects radiation
4
therapy cardiac
4
cardiac arrhythmias
4
arrhythmias stereotactic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!