Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The use of konjac glucomannan (KGM)/high acyl gellan gum (HAGG) edible film with single-sided unsaturated water swelling, designated as a water gradient film (WGF), has been shown to effectively enhance the preservation quality of frozen fish fillets. This study investigates the potential of using partially deacetylated konjac glucomannan (DKGM)/HAGG WGFs to enhance the preservation of frozen fish fillets. The partial deacetylation of KGM improved the water vapour and oxygen barrier properties of the frozen KGM/HAGG WGF, which exhibited a combination of film and ice structural characteristics. This improvement is attributed to strengthened interactions between DKGM and HAGG, resulting in a more structured film matrix that exhibited reduced permeability to both water vapour and oxygen. Furthermore, the improved interactions between DKGM and HAGG led to the formation of smaller polysaccharide ice crystals, which in turn increased the oxygen diffusion path along the intercrystalline boundaries, further decreasing oxygen permeability. Over a 90-day freezing period, the DKGM/HAGG WGF significantly outperformed traditional KGM/HAGG WGF, ice glazing, and polyethylene film packaging in preserving the quality of frozen fish fillets. This study provides a promising strategy for the design and development of DKGM-based WGFs for frozen fish fillet preservation applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2024.135203 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!