AI Article Synopsis

  • The aerobic composting process is commonly used for managing kitchen waste, but the quality of compost produced varies significantly, which limits its industrial use.
  • The study assessed compost quality from several facilities using different aerobic methods, focusing on seed germination index (GI) and heavy metal content, revealing that many samples did not meet standard quality requirements.
  • Key factors influencing GI included high levels of oil and salt in the compost and a simplified microbial community, suggesting these elements adversely affect compost maturity and overall quality for agricultural use.

Article Abstract

The aerobic composting process is extensively utilized to manage kitchen waste. Nonetheless, the variability in the quality of compost derived from engineering practices which significantly hinders its broader industrial application. This work investigated the final products of kitchen waste compost at multiple industrial-scale treatment facilities utilizing three distinct aerobic composting processes in a bid to explore key factors affecting compost quality. The quality evaluation was based on technical parameters like seed germination index (GI), and limiting factors such as heavy metal content. The results showed that most of the compost products failed to meet the established standards, with GI being the primary limiting indicator. Furthermore, maturity assessments suggested that compost with low GI exhibited reduced humification could not be recommended for agricultural use. The investigation delved into the primary determinants of GI, focusing on risk factors such as the oil and salt of kitchen waste, and the microbial community of the humification driving forces. The results indicated that products with low GI had higher oil and salt content and a relatively simple microbial community. A thorough analysis suggested that excessive levels oil and salt were potential influencing factors on GI, as they stimulated the activity of acid-producing bacteria like Lactobacillus, suppressed the activity of humification-promoting bacteria such as Actinomarinales, and influenced the decomposition and humification processes of organic matter and total nitrogen, thereby affecting product quality. The findings provide valuable insights for improving kitchen waste compost products for agricultural applications.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envres.2024.119899DOI Listing

Publication Analysis

Top Keywords

kitchen waste
20
oil salt
12
multiple industrial-scale
8
treatment facilities
8
influencing factors
8
aerobic composting
8
waste compost
8
compost products
8
microbial community
8
compost
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!