A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Unraveling how hydrogen-bonding networks affect the capture of amphetamine-type stimulants by polymerized deep eutectic solvent modified magnetic biochar: Coupling quantum chemical calculations with experiment. | LitMetric

AI Article Synopsis

  • The study highlights the detrimental effects of amphetamine-type stimulants (ATSs) on public safety and the environment, emphasizing the need for effective remediation methods.
  • A novel biochar, modified from pomelo peel, demonstrated exceptional adsorption capabilities for MDMA and other ATSs, significantly outperforming its reaction to other types of stimulants based on the strength of hydrogen bonds.
  • The research revealed active chemical sites on the modified biochar that facilitate strong interactions with ATSs, and these findings contribute to the development of materials for efficiently capturing these harmful substances from water.

Article Abstract

The abuse of amphetamine-type stimulants (ATSs) has caused irreversible harm to public safety and ecosystems. A novel polymerized deep eutectic solvent modified magnetic pomelo peel biochar (PMBC) was prepared, and the differences in adsorption of four abused amphetamine-type stimulants (ATSs: AMP, MAMP, MDA and MDMA) were due to varying hydrogen bonds quantities and strengths. PMBC showed excellent chemical reactivity to MDMA, with a maximum adsorption capacity of 926.13 μg g, which was 3.25, 2.52 and 1.15 times higher than that of AMP, MAMP and MDA, respectively. Modern spectral analysis showed that there were a series of active centers (-COOH, -NH and -OH) on the PMBC, which could form hydrogen bond networks with the nitrogen and oxygen functional groups of ATSs. In various chemical environments: pH level (4-11), inorganic ion and organic matter (humic acid), PMBC maintained high activity towards four ATSs. Additionally, the quantum chemical calculations revealed that the methylenedioxy bridge of ATSs can increase the active sites, and the -NH- and -NH groups had different hydrogen bond formation capabilities, which together resulted in the adsorption order of PMBC on the four ATSs: MDMA > MDA > MAMP > AMP. Moreover, the hydrogen-bonding binding energies of several common hydrogen-bonding types were compared, including O-H····O, N-H····O/O-H····N and N-H···N. This study laid an empirical and theoretical foundation for the efficient capture of ATSs in water and contributed to the innovative design of materials.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envres.2024.119892DOI Listing

Publication Analysis

Top Keywords

amphetamine-type stimulants
12
polymerized deep
8
deep eutectic
8
eutectic solvent
8
solvent modified
8
modified magnetic
8
quantum chemical
8
chemical calculations
8
stimulants atss
8
amp mamp
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!