A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Mycobacterium smegmatis putative Holliday junction resolvases RuvC and RuvX play complementary roles in the processing of branched DNA structures. | LitMetric

In eubacteria, Holliday junction (HJ) resolvases (HJRs) are crucial for faithful segregation of newly replicated chromosomes, homologous recombination, and repair of stalled/collapsed DNA replication forks. However, compared with the Escherichia coli HJRs, little is known about their orthologs in mycobacterial species. A genome-wide analysis of Mycobacterium smegmatis identified two genes encoding putative HJRs, namely RuvC (MsRuvC) and RuvX (MsRuvX); but whether they play redundant, overlapping, or distinct roles remains unknown. Here, we reveal that MsRuvC exists as a homodimer while MsRuvX as a monomer in solution, and both showed high-binding affinity for branched DNAs compared with unbranched DNA species. Interestingly, the DNA cleavage specificities of MsRuvC and MsRuvX were found to be mutually exclusive: the former efficiently promotes HJ resolution, in a manner analogous to the Escherichia coli RuvC, but does not cleave other branched DNA species; whereas the latter is a versatile DNase capable of cleaving a variety of branched DNA structures, including 3' and 5' flap DNA, splayed-arm DNA and dsDNA with 3' and 5' overhangs but lacks the HJ resolution activity. Point mutations in the RNase H-like domains of MsRuvC and MsRuvX pinpointed critical residues required for their DNA cleavage activities and also demonstrated uncoupling between DNA-binding and DNA cleavage activities. Unexpectedly, we found robust evidence that MsRuvX possesses a double-strand/single-strand junction-specific endonuclease and ssDNA exonucleolytic activities. Combined, our findings highlight that the RuvC and RuvX DNases play distinct complementary, and not redundant, roles in the processing of branched DNA structures in M. smegmatis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11466669PMC
http://dx.doi.org/10.1016/j.jbc.2024.107732DOI Listing

Publication Analysis

Top Keywords

branched dna
16
dna structures
12
dna cleavage
12
dna
11
mycobacterium smegmatis
8
holliday junction
8
junction resolvases
8
ruvc ruvx
8
roles processing
8
processing branched
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!