AI Article Synopsis

Article Abstract

Multinucleation occurs in various types of advanced cancers and contributes to their malignant characteristics, including anticancer drug resistance. Therefore, inhibiting multinucleation can improve cancer prognosis; however, the molecular mechanisms underlying multinucleation remain elusive. Here, we introduced a genetic mutation in cervical cancer cells to induce cell fusion-mediated multinucleation. The olfactory receptor OR1N2 was heterozygously mutated in these fused cells; the same OR1N2 mutation was detected in multinucleated cells from clinical cervical cancer specimens. The mutation-induced structural change in the OR1N2 protein activated protein kinase A (PKA), which, in turn, mediated the non-canonical olfactory pathway. PKA phosphorylated and activated furin protease, resulting in the cleavage of the fusogenic protein syncytin-1. Because this cleaved form of syncytin-1, processed by furin, participates in cell fusion, furin inhibitors could suppress multinucleation and reduce surviving cell numbers after anticancer drug treatment. The improved anticancer drug efficacy indicates a promising therapeutic approach for advanced cervical cancers.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11402306PMC
http://dx.doi.org/10.1016/j.neo.2024.101044DOI Listing

Publication Analysis

Top Keywords

cervical cancer
12
anticancer drug
12
non-canonical olfactory
8
olfactory pathway
8
cell fusion
8
cancer cells
8
multinucleation
5
pathway activation
4
activation induces
4
cell
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!