A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Deciphering the physiopathology of neurodevelopmental disorders using brain organoids. | LitMetric

Neurodevelopmental disorders (NDD) encompass a range of conditions marked by abnormal brain development in conjunction with impaired cognitive, emotional, and behavioural functions. Transgenic animal models, mainly rodents, traditionally served as key tools for deciphering the molecular mechanisms driving NDD physiopathology, and significantly contributed to the development of pharmacological interventions aimed at treating these disorders. However, the efficacy of these treatments in humans has proven to be limited, due in part to the intrinsic constraint of animal models to recapitulate the complex development and structure of the human brain but also to the phenotypic heterogeneity found between affected individuals. Significant advancements in the field of induced pluripotent stem cells (iPSC) offer a promising avenue for overcoming these challenges. Indeed, the development of advanced differentiation protocols for generating iPSC-derived brain organoids gives the unprecedented opportunity to explore the human neurodevelopment. This review provides an overview of how 3D brain organoids have been used to investigate various NDD (i.e., Fragile X syndrome, Rett syndrome, Angelman syndrome, microlissencephaly, Prader-Willi syndrome, Timothy Syndrome, tuberous sclerosis syndrome), and elucidate their pathophysiology. We also discuss the benefits and limitations of employing such innovative 3D models compared to animal models and 2D cell culture systems, in the realm of personalized medicine.

Download full-text PDF

Source
http://dx.doi.org/10.1093/brain/awae281DOI Listing

Publication Analysis

Top Keywords

brain organoids
12
animal models
12
neurodevelopmental disorders
8
syndrome
6
brain
5
deciphering physiopathology
4
physiopathology neurodevelopmental
4
disorders brain
4
organoids neurodevelopmental
4
disorders ndd
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!