Due to the increasing occurrence of drug resistant urinary tract infections (UTI) among children, there is a need to investigate alternative effective treatment protocols such as nanoparticles. Flagella and fimbriae are primary factors contributing the virulence of urinary tract infecting bacteria. The aim of this study was to assess the antibacterial effects of zinc oxide nanoparticles which have been synthesized using both chemical and green methods on multi-drug resistant (MDR) uropathogenic bacteria encoding fli and fim genes and investigating their binding ability to bacterial appendage proteins. A total of 30 urine culture samples were collected from children under 2 years old diagnosed with urinary tract infection. The isolates underwent antibiotic suseptibility assessment and the isolates demonstrating MDR were subjected to molecular amplification of fimG (fimbrial) and fliD and fliT (flagellal) genes. The confirmation of cellular appendages was achieved through silver nitrate staining. The antibacterial efficacy of the synthetized nanoparticles was assessed using the micro and macrodilution methods. The successful binding of nanoparticles to bacterial appendage proteins was confirmed through mobility shift and membrane filter assays. The dimensions of chemically synthesized ZnO nanoparticles and green nanoparticles were measured at 30 nm and 85 nm, respectively, with the exhibition of hexagonal geometries. The nanoparticles synthesized through chemical and green methods exhibited minimum inhibitory concentrations (MIC) of 0.0062-0.025 g/L and 0.3 g/L, respectively. The ability of ZnO nanoparticles to bind bacterial appendage proteins and to combat MDR uropathogenic bacteria are promising for new treatment protocols against UTI in children in future.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11405561 | PMC |
http://dx.doi.org/10.1007/s42770-024-01445-4 | DOI Listing |
J Fluoresc
January 2025
Materials Science Lab (1), Physics Department, Faculty of Science, Cairo University, Giza, Egypt.
This study reports the synthesis, characterization, and optical properties of ZnO, ZnCeO, and ZnNdO nanoparticles and their interactions with lead acetate solutions. X-ray diffraction (XRD) confirmed that the nanoparticles were synthesized in a single-phase hexagonal structure, with crystallite sizes of 12.48 nm, 50.
View Article and Find Full Text PDFJ Phys Chem Lett
January 2025
Graduate School of Science and Engineering, Kindai University, 3-4-1 Kowakae, Higashiosaka, Osaka 577-8502, Japan.
Selective modification of chemically active sites on supports, such as steps, edges, and corners, with metal nanoparticles (NPs) is a challenging topic in the fields of catalysis and photocatalysis. However, the formation of site-selective, high-density metal NPs on a support has not yet been achieved. Radial ZnO mesocrystals composed of hexagonal nanowires (NWs) with {101̅0} sidewalls were synthesized by a simple solution-phase method.
View Article and Find Full Text PDFAchieving the smallest crystallite/particle size of zinc oxide nanoparticles (ZnO NPs) reported to date, measuring 5.2/12.41 nm with () leaf extract, this study introduces a facile green synthesis.
View Article and Find Full Text PDFBioelectron Med
January 2025
School of Pharmacy, Biodiscovery Institute & Boots Science Building, University of Nottingham, Nottingham, NG7 2RD, UK.
Background: In glioblastoma (GBM) therapy research, tumour treating fields by the company Novocure™, have shown promise for increasing patient overall survival. When used with the chemotherapeutic agent temozolomide, they extend median survival by five months. However, there is a space to design alternative systems that will be amenable for wider use in current research.
View Article and Find Full Text PDFSci Rep
January 2025
Nanotechnology Department, Faculty of Science, Urmia University, Urmia, Iran.
Today, active packaging has become essential to increase food safety and decrease food spoilage. In this study, the aim was to delay spoilage and increase the shelf life of rainbow fish fillets with a new hybrid nanocomposite active packaging. Packaging was fabricated with Ethylene vinyl acetate and active compounds such as rosemary extract, zinc oxide nanoparticles, and modified iron (Fe-MMT).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!