Background: Integrated immune checkpoint inhibitors (ICIs) plus tyrosine kinase inhibitors (TKIs) are now the recommended first-line therapy to manage renal cell carcinoma (mRCC). Proteasome 26S subunit non-ATPase 2 (PSMD2) overexpression in tumors has been correlated with tumor progression. Currently, mRCC lacks an established biomarker for the combination of ICI+TKI.

Methods: This study involved RNA sequencing of RCC patients from two cohorts treated with ICI+TKI (ZS-MRCC and JAVELIN-Renal-101). We utilized immunohistochemistry alongside flow cytometry, aiming at assessing immune cell infiltration and functionality in high-risk localized RCC samples. Response and progression-free survival (PFS) were evaluated relying upon RECIST criteria.

Results: PSMD2 was significantly overexpressed in advanced RCC and among non-responders to ICI+TKI therapy. Overexpressed PSMD2 was correlated with poor PFS in the ZS-MRCC and JAVELIN-101 cohorts. Multivariate Cox analysis validated PSMD2 as an independent PFS predictor. PSMD2 overexpression was related to a reduction in CD8 T cells, especially GZMB CD8 T cells, besides an increase in PD1 CD4 T cells. Additionally, tumors with high PSMD2 levels showed enhanced T cell exhaustion levels and a higher regulatory T cell presence. A Machine Learning (ML) model based on PSMD2 expression and other screened factors was subsequently developed to predict the effectiveness of ICI+TKI.

Conclusions: Elevated PSMD2 expression is linked to resistance and decreased PFS in mRCC patients undergoing ICI+TKI therapy. High PSMD2 levels are also associated with impaired function and increased exhaustion of tumor-infiltrating lymphocytes. An ML model incorporating PSMD2 expression could potentially identify patients who may have a higher likelihood of benefiting from ICI+TKI.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s13402-024-00977-zDOI Listing

Publication Analysis

Top Keywords

psmd2 overexpression
12
psmd2 expression
12
psmd2
11
renal cell
8
cell carcinoma
8
immune checkpoint
8
tyrosine kinase
8
kinase inhibitors
8
ici+tki therapy
8
cd8 cells
8

Similar Publications

Background: Pancreatic cancer patients have limited treatment options and extremely poor prognosis. Dysregulations of proteasome 26S subunit, non-ATPases (PSMDs) contribute to the development of various cancers, whereas the significance of PSMDs in pancreatic cancer is poorly understood. In the present study, we intended to explore the therapeutic potential of PSMDs in pancreatic cancer.

View Article and Find Full Text PDF
Article Synopsis
  • This study examined how CD244 and SHP2 interact in the development of chronic obstructive pulmonary disease (COPD), particularly looking at inflammation and cell death caused by cigarette smoke.
  • Through analyzing gene expression data, researchers identified significant changes in gene activity associated with COPD, with specific pathways involved in inflammation and health impacts linked to cigarette smoke exposure.
  • The findings indicate that the CD244/SHP2 interaction plays a crucial role in regulating inflammatory and apoptotic processes, suggesting this pathway could be targeted for new COPD therapies.
View Article and Find Full Text PDF

Background: Integrated immune checkpoint inhibitors (ICIs) plus tyrosine kinase inhibitors (TKIs) are now the recommended first-line therapy to manage renal cell carcinoma (mRCC). Proteasome 26S subunit non-ATPase 2 (PSMD2) overexpression in tumors has been correlated with tumor progression. Currently, mRCC lacks an established biomarker for the combination of ICI+TKI.

View Article and Find Full Text PDF

A viral movement protein targets host catalases for 26S proteasome-mediated degradation to facilitate viral infection and aphid transmission in wheat.

Mol Plant

April 2024

State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China. Electronic address:

The infection of host plants by many different viruses causes reactive oxygen species (ROS) accumulation and yellowing symptoms, but the mechanisms through which plant viruses counteract ROS-mediated immunity to facilitate infection and symptom development have not been fully elucidated. Most plant viruses are transmitted by insect vectors in the field, but the molecular mechanisms underlying virus‒host-insect interactions are unclear. In this study, we investigated the interactions among wheat, barley yellow dwarf virus (BYDV), and its aphid vector and found that the BYDV movement protein (MP) interacts with both wheat catalases (CATs) and the 26S proteasome ubiquitin receptor non-ATPase regulatory subunit 2 homolog (PSMD2) to facilitate the 26S proteasome-mediated degradation of CATs, promoting viral infection, disease symptom development, and aphid transmission.

View Article and Find Full Text PDF

STAM Binding Protein Like 1 (STAMBPL1), functions as a deubiquitinase (DUB) and plays a significant role in various types of cancers. However, its effect as a DUB participating in the HCC tumorigenesis and progression still unknown. In the study, the upregulation and strong prognosis value of STAMBPL1 were identified in HCC patients.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!