The human gut microbiota produces diverse, extensive metabolites that have the potential to affect host physiology. Despite significant efforts to identify metabolic pathways for producing these microbial metabolites, a comprehensive metabolic pathway database for the human gut microbiota is still lacking. Here, we present Enteropathway, a metabolic pathway database that integrates 3269 compounds, 3677 reactions, and 876 modules that were obtained from 1012 manually curated scientific literature. Notably, 698 modules of these modules are new entries and cannot be found in any other databases. The database is accessible from a web application (https://enteropathway.org) that offers a metabolic diagram for graphical visualization of metabolic pathways, a customization interface, and an enrichment analysis feature for highlighting enriched modules on the metabolic diagram. Overall, Enteropathway is a comprehensive reference database that can complement widely used databases, and a tool for visual and statistical analysis in human gut microbiota studies and was designed to help researchers pinpoint new insights into the complex interplay between microbiota and host metabolism.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11367760 | PMC |
http://dx.doi.org/10.1093/bib/bbae419 | DOI Listing |
Microbiol Spectr
January 2025
Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA.
Unlabelled: The intestine is home to a complex immune system that is engaged in mutualistic interactions with the microbiome that maintain intestinal homeostasis. A variety of immune-derived anti-inflammatory mediators have been uncovered and shown to be critical for maintaining these beneficial immune-microbiome relationships. Notably, the gut microbiome actively invokes the induction of anti-inflammatory pathways that limit the development of microbiome-targeted inflammatory immune responses.
View Article and Find Full Text PDFJ Am Coll Surg
January 2025
Department of Surgery, University of Kentucky Medical Center, Lexington, KY.
Background: Colon cancer is a leading cause of mortality in Appalachian Kentucky. Studies suggest that the microbiome may influence cancer outcomes. We investigate differential gene expression, the tumor microbiome, and the association between the two as potential drivers of disparities in colon cancer outcomes.
View Article and Find Full Text PDFUnlabelled: Metatranscriptome (MetaT) sequencing is a critical tool for profiling the dynamic metabolic functions of microbiomes. In addition to taxonomic information, MetaT also provides real-time gene expression data of both host and microbial populations, thus permitting authentic quantification of the functional (enzymatic) output of the microbiome and its host. The main challenge to effective and accurate MetaT analysis is the removal of highly abundant rRNA transcripts from these complex mixtures of microbes, which can number in the thousands of individual species.
View Article and Find Full Text PDFThrough biochemical transformation of host-derived bile acids (BAs), gut bacteria mediate host-microbe crosstalk and sit at the interface of nutrition, the microbiome, and disease. BAs play a crucial role in human health by facilitating the absorption of dietary lipophilic nutrients, interacting with hormone receptors to regulate host physiology, and shaping gut microbiota composition through antimicrobial activity. Bile acid deconjugation by bacterial bile salt hydrolase (BSH) has long been recognized as the first necessary BA modification required before further transformations can occur.
View Article and Find Full Text PDFWe examine disease-specific and cross-disease functions of the human gut microbiome by colonizing germ-free mice, at risk for inflammatory arthritis, colitis, or neuroinflammation, with over 100 human fecal microbiomes from subjects with rheumatoid arthritis, ankylosing spondylitis, multiple sclerosis, ulcerative colitis, Crohn's disease, or colorectal cancer. We find common inflammatory phenotypes driven by microbiomes from individuals with intestinal inflammation or inflammatory arthritis, as well as distinct functions specific to microbiomes from multiple sclerosis patients. Inflammatory disease in mice colonized with human microbiomes correlated with systemic inflammation, measured by C-reactive protein, in the human donors.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!