AI Article Synopsis

  • Chiral carbon nanodots (CNDs) were created using a hydrothermal method involving sulfanilic acid and chiral tartaric acid.
  • These CNDs demonstrated excellent catalytic abilities in the chiral catalysis of the ring-opening reaction.
  • A catalytic mechanism was suggested to explore how the chiral structure of the CNDs relates to their high performance as catalysts.

Article Abstract

Chiral carbon nanodots (CNDs) were fabricated through the hydrothermal processing of sulfanilic acid and chiral tartaric acid, exhibiting outstanding catalytic performance for the chiral catalysis of the ring-opening reaction. Furthermore, the catalytic mechanism was proposed to understand the link between the chiral structure and the performance of the catalyst.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d4cc04119dDOI Listing

Publication Analysis

Top Keywords

chiral carbon
8
carbon nanodots
8
chiral
5
tartaric acid-derived
4
acid-derived chiral
4
nanodots catalytic
4
catalytic enantioselective
4
enantioselective ring-opening
4
ring-opening reactions
4
reactions styrene
4

Similar Publications

CFH-synthon enables asymmetric radical difluoroalkylation for synthesis of chiral difluoromethylated amines.

Nat Commun

January 2025

Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.

The difluoromethyl group is a crucial fluorinated moiety with distinctive biological properties, and the synthesis of chiral CF₂H-containing analogs has been recognized as a powerful strategy in drug design. To date, the most established method for accessing enantioenriched difluoromethyl compounds involves the enantioselective functionalization of nucleophilic and electrophilic CF₂H synthons. However, this approach is limited by lower reactivity and reduced enantioselectivity.

View Article and Find Full Text PDF

Single-walled carbon nanotubes (SWNTs) exhibit distinct electronic properties, categorized as metallic or semiconducting, determined by their chirality. The precise and selective separation of these electronic types is pivotal for advancing nanotechnology applications. While conventional gel chromatography has been widely employed for large-scale separations, its limitations in addressing microscale dynamics and electronic-type differentiation have persisted.

View Article and Find Full Text PDF

Asymmetric Heck Silylation of Unactivated Alkenes.

Angew Chem Int Ed Engl

January 2025

Zhejiang Uiversity, Chemistry, 866 Yuhangtang Road, 310058, Hangzhou, CHINA.

Heck silylation of unactivated alkenes is an efficient strategy for the synthesis of useful organosilicon compounds. However, extensive efforts have been dedicated to only achieving achiral molecules. Herein, a highly regio- and enantioselective cobalt-catalyzed Heck silylation of unactivated alkenes with hydrosilanes is reported for the first time, providing access to axially chiral alkenes in good to excellent yields with 87-98% ee.

View Article and Find Full Text PDF

All-carbon supramolecular complexation of a bilayer molecular nanographene with [60] and [70]fullerenes.

Org Chem Front

December 2024

Departamento de Química Orgánica I, Facultad de Ciencias Químicas, Universidad Complutense de Madrid Av. Complutense S/N 28040 Madrid Spain

Supramolecular chemistry of carbon-based materials provides a variety of chemical structures with potential applications in materials science and biomedicine. Here, we explore the supramolecular complexation of fullerenes C and C, highlighting the ability of molecular nanographene tweezers to capture these structures. The binding constant for the CNG-1⊃C complex was significantly higher than for CNG-1⊃C, showing a clear selectivity for the more π-extended C.

View Article and Find Full Text PDF

Four Alkaloids from with Antitumor Activity via Disturbing Glutathione Homeostasis.

J Org Chem

January 2025

Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China.

Alstoschoquinolines A-D (-) representing three unprecedented scaffolds were isolated from the leaves of through direct separation by LC/MS detection. and consisted of a 5/6/5-coupled quinoline architecture containing six consecutive chiral carbons, while and possessed a bridged ring featuring 6/6/6/6 and 6/6/8/6 skeletons, respectively. They might be derived from the corynantheine-type indole alkaloid via sequential oxidation and rearrangement.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!