Cobalt (Co) contamination in soils potentially affects human health through the food chain. Although rice (Oryza sativa) as a staple food is a major dietary source of human Co intake, it is poorly understood how Co is taken up by the roots and accumulated in rice grain. In this study, we physiologically characterized Co accumulation and identified the transporter for Co uptake in rice. A dose-dependent experiment showed that Co mainly accumulated in rice roots. Further analysis with LA-ICP-MS showed Co deposited in most tissue of the roots, including exodermis, endodermis and stele region. Co accumulation analysis using mutants defective in divalent cation uptake showed that Co uptake in rice is mediated by the Mn/Cd/Pb transporter OsNramp5, rather than OsIRT1 for Fe and OsZIP9 for Zn. Knockout of OsNramp5 enhanced tolerance to Co toxicity. Heterologous expression of OsNramp5 showed transport activity for Co in Saccharomyces cerevisiae. Co uptake was inhibited by either Mn or Cd supply. At the reproductive stage, the Co concentration in the straw and grains of the OsNramp5 knockout lines was decreased by 41%-48% and 28%-36%, respectively, compared with that of the wild-type rice. The expression level of OsNramp5 in the roots was not affected by Co. Taken together, our results indicate that OsNramp5 is a major transporter for Co uptake in rice, which ultimately mediates Co accumulation in the grains.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11615428 | PMC |
http://dx.doi.org/10.1111/pce.15130 | DOI Listing |
Nat Commun
January 2025
State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, China.
Rising atmospheric CO generally increases yield of indica rice, one of the two main Asian cultivated rice subspecies, more strongly than japonica rice, the other main subspecies. The molecular mechanisms driving this difference remain unclear, limiting the potential of future rice yield increases through breeding efforts. Here, we show that between-species variation in the DNR1 (DULL NITROGEN RESPONSE1) allele, a regulator of nitrate-use efficiency in rice plants, explains the divergent response to elevated atmospheric CO (eCO) conditions.
View Article and Find Full Text PDFPhysiol Rep
January 2025
Center for Translational Research in Aging and Longevity, Department of Health and Kinesiology, Texas A&M University, College Station, Texas, USA.
Sepsis leads to an acute breakdown of muscle to support increased caloric and amino acid requirements. Little is known about the role of adipose and muscle tissue breakdown and intestinal metabolism in glucose substrate supply during the acute phase of sepsis. In a translational porcine model of sepsis, we explored the across organ net fluxes of gluconeogenic substrates.
View Article and Find Full Text PDFJ Environ Manage
January 2025
Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China.
Silicon (Si) and arbuscular mycorrhizal fungi (AMF) increase plant resistance to various environmental stresses, including heavy metal (and metalloid) toxicity. Although Si and AMF each independently enhance plant tolerance, the nature of their interactions and their combined impacts on nutrient uptake, especially in the context of toxic elements such as arsenic (As), remains to be elucidated. This study investigated AMF-mediated regulation of plant nutrient uptake under As stress using rice, a model Si-accumulating plant.
View Article and Find Full Text PDFNat Commun
January 2025
State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China.
Ideal root system architecture (RSA) is important for efficient nutrient uptake and high yield in crops. We cloned and characterized a key RSA regulatory gene, GRAVITROPISM LOSS 1 (OsGLS1), in rice (Oryza sativa L.).
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
December 2024
Department of Botany, Ravenshaw University, Cuttack, 751003, Odisha, India.
Antibiotics are extensively used to manage human, animal and plant ailments caused by microbial infections. However, rampant use of antibiotics has led to the development of antibiotic resistance, which is a public health concern. The development of antibiotic resistance is significantly influenced by agro-ecosystems.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!