AI Article Synopsis

Article Abstract

Radiotherapy (RT) is one of major therapeutic modalities in combating breast cancer. In RT, ionizing radiation is employed to induce DNA double-strand breaks (DSBs) as a primary mechanism that causes cancer cell death. However, the induced DNA damage can also trigger the activation of DNA repair mechanisms, reducing the efficacy of RT treatment. Given the pivotal role of RAD50 protein in the radiation-responsive DNA repair pathways involving DSBs, we developed a novel polymer-lipid based nanoparticle formulation containing RAD50-silencing RNA (RAD50-siRNA-NPs) and evaluated its effect on the RAD50 downregulation as well as cellular and tumoral responses to ionizing radiation using human triple-negative breast cancer as a model. The RAD50-siRNA-NPs successfully preserved the activity of the siRNA, facilitated its internalization by cancer cells via endocytosis, and enabled its lysosomal escape. The nanoparticles significantly reduced RAD50 expression, whereas RT alone strongly increased RAD50 levels at 24 h. Pretreatment with RAD50-siRNA-NPs sensitized the cancer cells to RT with ∼2-fold higher level of initial DNA DSBs as determined by a γH2AX biomarker and a 2.5-fold lower radiation dose to achieve 50 % colony reduction. Intratumoral administration of RAD50-siRNA-NPs led to a remarkable 53 % knockdown in RAD50. The pretreatment with RAD50-siRNA-NPs followed by RT resulted in approximately a 2-fold increase in DNA DSBs, a 4.5-fold increase in cancer cell apoptosis, and 2.5-fold increase in tumor growth inhibition compared to RT alone. The results of this work demonstrate that RAD50 silencing by RAD50-siRNA-NPs can disrupt RT-induced DNA damage repair mechanisms, thereby significantly enhancing the radiation sensitivity of TNBC MDA-MB-231 cells and in orthotopic tumors as measured by colony forming and tumor regrowth assays, respectively.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11364914PMC
http://dx.doi.org/10.1016/j.mtbio.2024.101206DOI Listing

Publication Analysis

Top Keywords

dna damage
12
breast cancer
12
damage repair
8
ionizing radiation
8
cancer cell
8
dna repair
8
repair mechanisms
8
cancer cells
8
pretreatment rad50-sirna-nps
8
dna dsbs
8

Similar Publications

Engineered Cell Microenvironments: A Benchmark Tool for Radiobiology.

ACS Appl Mater Interfaces

January 2025

Department of Precision and Microsystems Engineering, Faculty of Mechanical Engineering, Delft University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands.

The development of engineered cell microenvironments for fundamental cell mechanobiology, in vitro disease modeling, and tissue engineering applications increased exponentially during the last two decades. In such context, in vitro radiobiology is a field of research aiming at understanding the effects of ionizing radiation (e.g.

View Article and Find Full Text PDF

Multidrug resistance (MDR) facilitates tumor recurrence and metastasis, which has become a main cause of chemotherapy failure in clinical. However, the current therapeutic effects against MDR remain unsatisfactory, mainly hampered by the rigid structure of drug-resistant cell membranes and the uncontrolled drug release. In this study, based on a sequential drug release strategy, we engineered a core-shell nanoparticle (DOX-M@CaP@ATV@HA) depleting cholesterol for reverse tumor MDR.

View Article and Find Full Text PDF

Breast cancer is the most common cancer among women, with over 1 million new cases and around 400,000 deaths annually worldwide. This makes it a significant and costly global health challenge. Standard treatments like chemotherapy and radiotherapy, often used after mastectomy, show varying effectiveness based on the cancer subtype.

View Article and Find Full Text PDF

Background: Cancer immunotherapy has transformed metastatic cancer treatment, yet challenges persist regarding therapeutic efficacy. RECQL4, a RecQ-like helicase, plays a central role in DNA replication and repair as part of the DNA damage response, a pathway implicated in enhancing efficacy of immune checkpoint inhibitor (ICI) therapies. However, its role in patient response to ICI remains unclear.

View Article and Find Full Text PDF

Metal nanoparticles are established tools for biomedical applications due to their unique optical properties, primarily attributed to localized surface plasmon resonances. They show distinct optical characteristics, such as high extinction cross-sections and resonances at specific wavelengths, which are tunable across the wavelength spectrum by modifying the nanoparticle geometry. These attributes make metal nanoparticles highly valuable for sensing and imaging in biology and medicine.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!