In an effort to prepare a modern polysaccharide-based dressing for sustained/prolonged delivery of the antibacterial agent to prevent and control skin wound infection, ciprofloxacin (CP)-loaded sodium alginate (SA)-chitosan (CS) nanoparticles (NPs) were incorporated into novel arabinoxylan (AX)-pectin (PC) blended polymeric films by solvent casting. The CP-NPs were prepared by a two-step ionic interaction method with < 300 nm size, about 25 mV zeta potential, 74% CP-loading efficiency, and approximately round shape. The CP-NPs were incorporated in optimized AX-PC polymeric film prepared by using 2% AX and 2% PC with a plasticizer (2% glycerol) and then these films were characterized for suitability as a film dressing. The transparency, improved mechanical strength, thermal stability, water transmission, and exudate uptake characteristics indicated that CP-NPs incorporated AX-PC polymeric films were suitable for dressing applications. The CP-NPs incorporated AX-PC films exhibited sustained CP release (90% release in 36 h) and better antibacterial susceptibility as compared to free CP-containing AX-PC films. Thus, CP-NPs incorporated AX-PC films are promising dressing materials to prevent and control wound infection with prolonged antibiotic release.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11361098 | PMC |
http://dx.doi.org/10.1039/d4ra02951h | DOI Listing |
RSC Adv
August 2024
Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University Sakaka 72388 Saudi Arabia.
In an effort to prepare a modern polysaccharide-based dressing for sustained/prolonged delivery of the antibacterial agent to prevent and control skin wound infection, ciprofloxacin (CP)-loaded sodium alginate (SA)-chitosan (CS) nanoparticles (NPs) were incorporated into novel arabinoxylan (AX)-pectin (PC) blended polymeric films by solvent casting. The CP-NPs were prepared by a two-step ionic interaction method with < 300 nm size, about 25 mV zeta potential, 74% CP-loading efficiency, and approximately round shape. The CP-NPs were incorporated in optimized AX-PC polymeric film prepared by using 2% AX and 2% PC with a plasticizer (2% glycerol) and then these films were characterized for suitability as a film dressing.
View Article and Find Full Text PDFNanomicro Lett
August 2020
Key Lab of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, People's Republic of China.
Conductive polymers (CPs) are generally insoluble, and developing hydrophilic CPs is significant to broaden the applications of CPs. In this work, a mussel-inspired strategy was proposed to construct hydrophilic CP nanoparticles (CP NPs), while endowing the CP NPs with redox activity and biocompatibility. This is a universal strategy applicable for a series of CPs, including polyaniline, polypyrrole, and poly(3,4-ethylenedioxythiophene).
View Article and Find Full Text PDFLangmuir
January 2018
Department of Chemistry, Graduate School of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
Coordination polymer (CP) nanoparticles (NPs) formed by a self-assembly of organic ligands and metal ions are one of the attractive materials for molecular capture and deliver/release in aqueous media. Control of particle size and prevention of aggregation among CP NPs are important factors for improving their adsorption capability in water. We demonstrate here the potential of a liposome incorporating an antibiotic ion channel as a vessel for synthesizing Prussian blue (PB) NPs, being a typical CP.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!