This review aims to enrich our understanding of Chiari-like malformation (CLM) by combining human and veterinary insights, and providing a detailed cross-species overview. CLM is a developmental abnormality characterised by caudal displacement of the hindbrain into the foramen magnum due to an entire brain parenchymal shift caused by insufficient skull volume. This malformation leads to a progressive obstruction at the craniocervical junction, which disrupts the normal cerebrospinal fluid flow, leading to secondary syringomyelia. The clinical signs of CLM and syringomyelia include phantom scratching, head tilt, head tremor, ataxia, tetraparesis, pain, muscle atrophy, and scoliosis or torticollis. Magnetic resonance imaging remains the gold standard for diagnosing CLM, since it allows the visualisation of abnormal findings such as the caudal cerebellar herniation, caudal cerebellar compression from occipital dysplasia, and attenuated cerebrospinal fluid cisternae. Although various medical and surgical interventions, including foramen magnum decompression, can provide temporary symptomatic/clinical sign relief, current literature shows a lack of sustained long-term efficacy. Therefore, additional research is needed to evaluate the long-term effects of existing treatment strategies and to compare different techniques utilised in conjunction with foramen magnum decompression.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11359979 | PMC |
http://dx.doi.org/10.17221/125/2023-VETMED | DOI Listing |
Background: Sleep's crucial role in maintaining brain health is increasingly recognized, particularly due to the rising prevalence of neurodegenerative diseases. It not only supports cognitive function but also aids in clearing brain metabolic waste through cerebrospinal fluid (CSF) dynamics. During sleep, especially in the non-rapid eye movement (NREM) phase, CSF flow increases, essential for removing neurotoxic substances like amyloid-beta proteins.
View Article and Find Full Text PDFAnimals (Basel)
December 2024
Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal.
The aim of this preliminary study was to morphologically and dimensionally characterize the cat's olfactory bulb in the sagittal plane and to establish potential relationships with the cranial conformation, based on the study of in vivo MRI images. Midsagittal and transverse T2-weighted images of the head of 40 cats subjected to MRI were selected. For each animal, the skull index was calculated to classify the cranial conformation.
View Article and Find Full Text PDFCalcif Tissue Int
January 2025
Department of Paediatric Endocrinology, Alder Hey Children's Hospital, Liverpool, UK.
Autosomal recessive hypophosphatemic rickets type 2 (ARHR2) is an uncommon hereditary form of rickets characterised by chronic renal phosphate loss and impaired bone mineralisation. This results from compound heterozygous or homozygous pathogenic variants in ectonucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1), a key producer of extracellular inorganic pyrophosphate (PPi) and an inhibitor of fibroblast growth factor23 (FGF23). ENPP1 deficiency impacts FGF23 and increases its activity.
View Article and Find Full Text PDFJ Neuroimaging
December 2024
Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA.
Background And Purpose: In idiopathic normal pressure hydrocephalus (iNPH) patients, cerebrospinal fluid (CSF) flow is typically evaluated with a cardiac-gated two-dimensional (2D) phase-contrast (PC) MRI through the cerebral aqueduct. This approach is limited by the evaluation of a single location and does not account for respiration effects on flow. In this study, we quantified the cardiac and respiratory contributions to CSF movement at multiple intracranial locations using a real-time 2D PC-MRI and evaluated the diagnostic value of CSF dynamics biomarkers in classifying iNPH patients.
View Article and Find Full Text PDFBrain Spine
November 2024
Neurosurgical Department, "KAT" General Hospital of Athens, Greece.
Introduction: Klippel-Trenaunay Syndrome (KTS) is a rare congenital condition characterized by vascular malformations, bone abnormalities, and limb overgrowth. The genetic basis of KTS is not fully understood, and the diagnosis relies on clinical features. Its clinical spectrum includes several neurosurgical diagnoses, such as cavernous hemangiomas, arteriovenous fistulas, and Chiari I malformation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!