Advancements in precision nanomedicine design targeting the anoikis-platelet interface of circulating tumor cells.

Acta Pharm Sin B

State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.

Published: August 2024

AI Article Synopsis

  • * The review discusses how CTCs form and their mechanisms for spreading cancer, including their interactions with signaling pathways and platelets.
  • * It highlights the importance of advanced nanomedicine strategies aimed at targeting CTC survival methods to improve outcomes in metastatic cancer therapies.

Article Abstract

Tumor metastasis, the apex of cancer progression, poses a formidable challenge in therapeutic endeavors. Circulating tumor cells (CTCs), resilient entities originating from primary tumors or their metastases, significantly contribute to this process by demonstrating remarkable adaptability. They survive shear stress, resist anoikis, evade immune surveillance, and thwart chemotherapy. This comprehensive review aims to elucidate the intricate landscape of CTC formation, metastatic mechanisms, and the myriad factors influencing their behavior. Integral signaling pathways, such as integrin-related signaling, cellular autophagy, epithelial-mesenchymal transition, and interactions with platelets, are examined in detail. Furthermore, we explore the realm of precision nanomedicine design, with a specific emphasis on the anoikis‒platelet interface. This innovative approach strategically targets CTC survival mechanisms, offering promising avenues for combatting metastatic cancer with unprecedented precision and efficacy. The review underscores the indispensable role of the rational design of platelet-based nanomedicine in the pursuit of restraining CTC-driven metastasis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11365446PMC
http://dx.doi.org/10.1016/j.apsb.2024.04.034DOI Listing

Publication Analysis

Top Keywords

precision nanomedicine
8
nanomedicine design
8
circulating tumor
8
tumor cells
8
advancements precision
4
design targeting
4
targeting anoikis-platelet
4
anoikis-platelet interface
4
interface circulating
4
cells tumor
4

Similar Publications

Synthetic Bilirubin-Based Nanomedicine Protects Against Renal Ischemia/Reperfusion Injury Through Antioxidant and Immune-Modulating Activity.

Adv Healthc Mater

January 2025

Department of Biological Sciences, KAIST Institute for the BioCentury, Center for Precision Bio-Nanomedicine, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea.

Renal ischemia/reperfusion injury (IRI) is a common form of acute kidney injury. The basic mechanism underlying renal IRI is acute inflammation, where oxidative stress plays an important role. Although bilirubin exhibits potent reactive oxygen species (ROS)-scavenging properties, its clinical application is hindered by problems associated with solubility, stability, and toxicity.

View Article and Find Full Text PDF

Background: The application of nanomedicine in inflammatory bowel disease (IBD) has gained significant attention in the recent years. As the field rapidly evolves, analyzing research trends and identifying research hotpots are essential for guiding future advancements, and a comprehensive bibliometric can provide valuable insights.

Methods: The current research focused on publications from 2001 to 2024, and was sourced from the Web of Science Core Collection (WoSCC).

View Article and Find Full Text PDF

Radiotherapy (RT) is one of the most common treatments for cancer. However, intracellular glutathione (GSH) plays a key role in protecting cancer from radiation damage. Herein, we have developed a platelet membrane biomimetic nanomedicine (PMD) that induces double GSH consumption to enhance tumor radioimmunotherapy.

View Article and Find Full Text PDF

Purpose: None of the antibody-drug conjugates (ADCs) targeting Claudin 18.2 (CLDN18.2) have received approval from regulatory authorities due to their limited clinical benefits.

View Article and Find Full Text PDF

Fabrication and functional validation of a hybrid biomimetic nanovaccine (HBNV) against -mutant melanoma.

Bioact Mater

April 2025

Wellman Center for Photomedicine and Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.

Cancer nanovaccines hold the promise for personalization, precision, and pliability by integrating all the elements essential for effective immune stimulation. An effective immune response requires communication and interplay between antigen-presenting cells (APCs), tumor cells, and immune cells to stimulate, extend, and differentiate antigen-specific and non-specific anti-tumor immune cells. The versatility of nanomedicine can be adapted to deliver both immunoadjuvant payloads and antigens from the key players in immunity (i.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!