We illustrate the utility of native mass spectrometry (nMS) combined with a fast, tunable gas-phase charge reduction, electron capture charge reduction (ECCR), for the characterization of protein complex topology and glycoprotein heterogeneity. ECCR efficiently reduces the charge states of tetradecameric GroEL, illustrating Orbitrap / measurements to greater than 100,000 /. For pentameric C-reactive protein and tetradecameric GroEL, our novel device combining ECCR with surface induced dissociation (SID) reduces the charge states and yields more topologically informative fragmentation. This is the first demonstration that ECCR yields more native-like SID fragmentation. ECCR also significantly improved mass and glycan heterogeneity measurements of heavily glycosylated SARS-CoV-2 spike protein trimer and thyroglobulin dimer. Protein glycosylation is important for structural and functional properties and plays essential roles in many biological processes. The immense heterogeneity in glycosylation sites and glycan structure poses significant analytical challenges that hinder a mechanistic understanding of the biological role of glycosylation. Without ECCR, average mass determination of glycoprotein complexes is available only through charge detection mass spectrometry or mass photometry. With narrow / selection windows followed by ECCR, multiple glycoform / values are apparent, providing quick global glycoform profiling and providing a future path for glycan localization on individual intact glycoforms.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11363329 | PMC |
http://dx.doi.org/10.1021/acscentsci.4c00461 | DOI Listing |
Int J Biol Macromol
December 2024
Department of Chemistry, University of Ulsan, Ulsan 44610, Republic of Korea. Electronic address:
The improper handling and uncontrolled discharge of toxic organic dyes result in significant adverse effects on both human health and the environment. This study investigates the fabrication of SnO₂, yttrium and cobalt dual-doped SnO₂ (YCSn), chitosan-capped SnO₂ (CS*Sn), and chitosan-capped yttrium and cobalt dual-doped SnO₂ (CS*YCSn) nanoparticles using a one-step coprecipitation method for the photocatalytic degradation of methylene blue (MB) under visible light irradiation. Characterization techniques including X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), high-resolution transmission electron microscopy (HRTEM), and ultraviolet-visible (UV-Vis) spectrophotometry confirm the successful synthesis of biodegradable CS*YCSn nanoparticles.
View Article and Find Full Text PDFTalanta
December 2024
Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Military Medical Sciences Academy, Tianjin, 300050, China. Electronic address:
The detection of ammonia (NH)gas holds significant importance in both daily life and industrial production. In this study, the NbCT/MoSe sensor was synthesized using a one-step hydrothermal method and applied for NH detection. The morphology and elemental composition of the composites were analyzed through a series of characterization techniques including XRD, TEM, SEM, and XPS, confirming the successful synthesis of NbCT/MoSe composite with the optimal mass ratio.
View Article and Find Full Text PDFACS Cent Sci
December 2024
Organic Bioelectronics Laboratory, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia.
Electron transporting (n-type) polymeric mixed conductors are an exciting class of materials for devices with aqueous electrolyte interfaces, such as bioelectronic sensors, actuators, and soft charge storage systems. However, their charge transport performance falls short of their p-type counterparts, primarily due to electrochemical side reactions such as the oxygen reduction reaction (ORR). To mitigate ORR, a common strategy in n-type organic semiconductor design focuses on lowering the lowest unoccupied molecular orbital (LUMO) level.
View Article and Find Full Text PDFCureus
November 2024
Orthopedic Surgery, University of Tsukuba, Tsukuba, JPN.
Background and objective Orthopedic surgery, particularly joint replacement, involves the use of many implants, resulting in a large amount of product packaging waste. To date, no study has surveyed artificial joint manufacturers on the recycling and reduction of packaging materials and their Sustainable Development Goal (SDG) initiatives. This questionnaire survey aimed to identify the current status of orthopedic artificial joint manufacturers in terms of implementing SDG initiatives.
View Article and Find Full Text PDFSci Rep
December 2024
School of Management, Shenyang University of Technology, Shenyang, 100870, China.
This study presents a novel framework for advancing sustainable urban logistics and distribution systems, with a pivotal focus on fast charging and power exchange modalities as the cornerstone of our research endeavors. Our central contribution encompasses the formulation of an innovative electric vehicle path optimization model, whose paramount objective is to minimize overall operational costs. Integrating V2G technology, we facilitate sophisticated slow charging and discharging management of EVs upon their return to distribution centers, enhancing resource utilization.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!